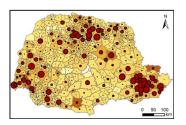

CLIMATE AND COVID-19 IN THE STATE OF PARANÁ (BRAZIL)

Francisco de Assis MENDONÇA¹, Pedro Augusto Breda FONTÃO², Wilson Flavio Feltrim ROSEGHINI³

¹ Federal University of Parana - UFPR, Brazil, Full Professor and Researcher <u>(chico@ufpr.br)</u> ² Federal University of Parana - UFPR, Brazil, Assistant Professor (<u>pedrofontao@ufpr.br</u>) ³ Federal University of Parana - UFPR, Brazil, Associate Professor (<u>feltrim@ufpr.br</u>)



1. Introduction

✓ The relationship between climate and respiratory diseases is a classic topic in the field of climatology and epidemiology.

respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, was declared a global pandemic on March 11, 2020 by the World Health Organization (WMO, 2022).

 \checkmark The COVID-19 outbreak of coronavirus, an infectious disease caused by the severe acute

- ✓ Since the beginning of the pandemic, several scholars have tried to establish relationships between the climate and the rapid spread and contagion of the population by SARS-CoV-2 in different countries and places.
- ✓ In this context, the present study carried out an analysis relating the dynamics of climate and Covid-19 in the State of Paraná (Brazil).

CLIMATE AND COVID19 PANDEMIC 2020 !

Table 2 - World: Climate and Covid-19 (partial)

CITY / COUNTRY	TOTAL CASES	CLIMATE	
	11/04/2020	(Köppen-Geiger)	
01. Wuhan / China	51.140	Cfa	
02. Bergamo / Italy	10.258	Cfa	
03. Madrid / Spain	45.849	CSa	
04. New York / USA	98.715	Cfa	
05. London / England	18.847	Cfb	
06. Heinsberg / Germany	1.573	Cfb	
07. Paris / France	3.249	Cfb	
08. Tehran / Iran	70.029	BSk	
09. Guayaquil / Ecuador	3.984	BSh	

 Table 4. Brazil - Climate and COVID-19 cases (partial) until 2020/04/12.

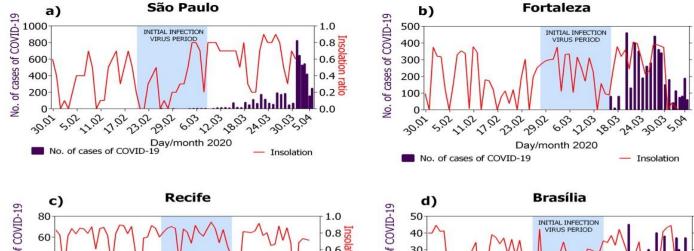
City	Latitude	Climate First case		Case	Registration	Lethality	
City	Lalluue	type*	Covid-19	registration**	Deaths**	rate***	
Manaus	3ºs	Am	13-mar-20	1053	52	49.3	
Fortaleza	3⁰S	Aw	15-mar-20	1747	74	42.3	
Recife	8ºS	Am	12-mar-20	960	65	67.7	
Brasília	15⁰S	Aw	7-mar-20	614	14	22.8	
Rio de Janeiro	22ºS	Aw	5-mar-20	2855	170	59.5	
São Paulo	23ºS	Cfa	26-fev-20	6352	588	92.5	
BRASIL	5°N/34°S	A – B – C	26-fev-20	22318	1230	55.1	

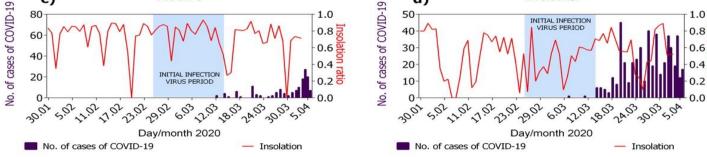
Note: *Climatic groups according to Köppen-Geiger climate classification. ** Data refer to the states, whereas most cases were registered in the capital cities. ***Lethality rate obtained by the ratio between 1000 confirmed cases and the number of deaths.

CLIMATE AND COVID19 PANDEMIC 2020 !

	Tuna		Tantad		Range		Taract	
References	Type article	Country	Tested environment	Temperature	Relative humidity	Absolute humidity	- Target Virus	Outcome
Tan et al., 2005	Published	China, Taiyuan	Outdoor environment	16 - 28 °C			SARS	The optimum environmental may encourage virus growth. There is a higher possibility for SARS to reoccur in spring than that in autumn and winter.
Casanova et al., 2010	Published	China	Laboratory	20 than at 4 °C	20- 50 - 80%		SARS- CoV	For temperature, the viruses were inactivated more rapidly on surfaces and all humidity levels.
Van Doremalen et al., 2013	Published	USA	Laboratory	20°C	40%		MERS- CoV	MERS-CoV was more stable at low temperature and low humidity conditions.
Xie & Zhu, 2020	Published	China	Outdoor environment	< 3.0 x > 3.0°C			SARS- COV-2	The mean temperature has a positive linear relationship with the number of COVID-19 cases with a threshold of 3 °C.
Chan et al., 2011	Published	China	Laboratory	22-25.0 °C	40-50%		SARS- COV	Low temperature and humidity may facilitate COVID-19 transmission.
Bukhari et al., 2020	Preprint	USA	Outdoor environment	3-17 °C	-	3-9g/m3	SARS- COV-2	COVID-19 would not spread in warm humid regions.
Sajadi et al., 2020	Preprint	USA	Outdoor environment	5-11 °C	3-6 g/kg	4-7 g/m3	SARS- COV-2	Established significant community spread in cities and regions along a narrow east-west distribution roughly along the 30-500 N' corridor.

Table 2. Climate and COVID-19 – Literature review until A	oril 15, 2020.
	pm 10, 2020.


CLIMATE AND COVID19 PANDEMIC 2020 !


1.0

0.8

0.6 0.4 ratio

0.0

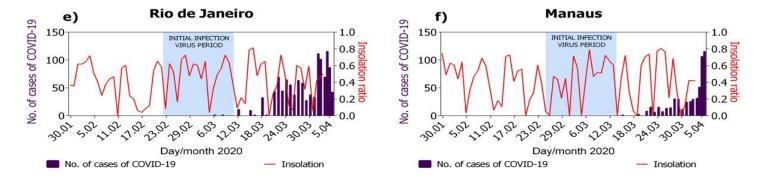
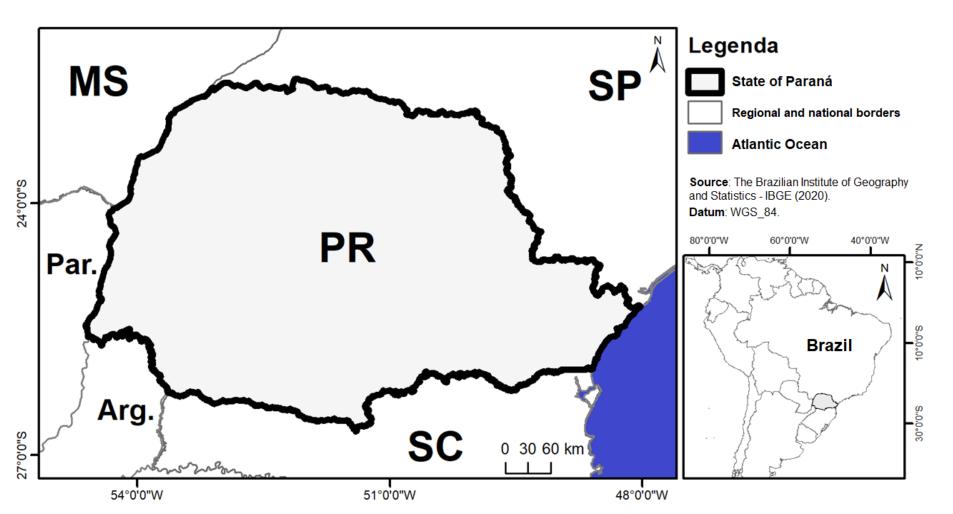
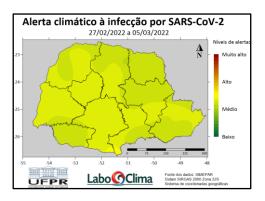
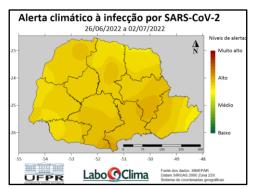



Figure 1: Brazil - Insolation ratio and cases of COVID-19 in six capital cities (from 31/01 to 05/04/2020).

AICTOULOUSE 2022 35^{ème} colloque annuel de l'Association Internationale de Climatologie


Paraná is located in the southern region of Brazil, has a population of about 11.5 million inhabitants and is characterized bv two predominant climate types according to the Köppen classification (Mendonça and Danni-Oliveira, 2007): Cfa (humid temperate climate with hot summer) and Cfb (humid temperate climate with cool summer).


0

METEO

AICTOULOUSE 2022 35°me colloque annuel de l'Association Internationale de Climatologie

2. Methodology

Two examples of SACER maps. Website: http://www.terra.ufpr.br/portal/laboclima/sacer/

✓ The survey and collection of official data on cases and mortality by COVID-19 was carried out with SESA/PR - Paraná State Health Department (March 2020 to August 2021).

0

METEO

- ✓ COVID-19 data were organized and mapped by cities in the State of Paraná (ArcGIS Pro software).
- ✓ Climatic data (temperature, precipitation and insolation) were collected and analyzed from the four cities that had the most registered cases of COVID-19 in Paraná (Curitiba, Londrina, Maringá and Foz do Iguaçu).
- ✓ To assist data analysis, the SACER Climate Alert System for Respiratory Diseases were used. It is a platform developed by the LABOCLIMA/UFPR (2022) to evaluate in the epidemiological weeks the parameters and weather categories (from temperature and humidity) of transmission based on the state of the art on the knowledge of the relationship between the climate and COVID-19.
- ✓ The study deals with the variations of the climate dynamics during the pandemic in a multicausal perspective, and was prepared in accordance with the concept of pathogenic complexes (Sorre, 1984), with climate being one of the important elements in this approach (Besancenot, 2001; Ab'Sáber, 2007).

3. Results

3.1. Temporal evolution of the spatial distribution of COVID-19 in Paraná

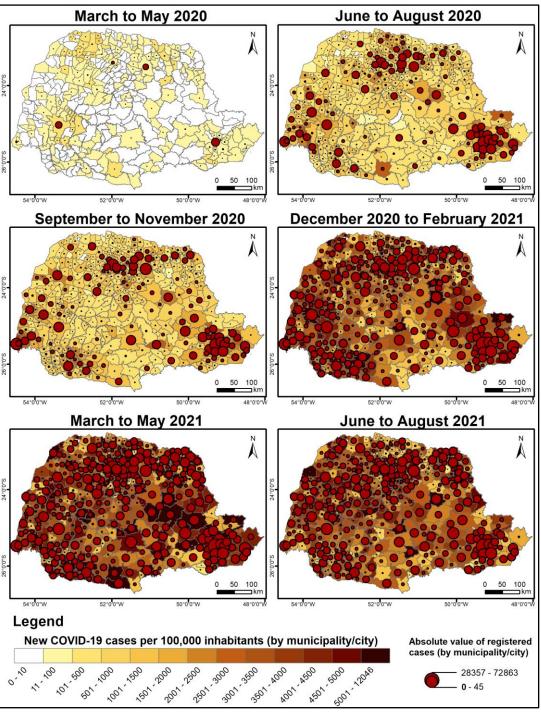


Figure 1. Quarterly maps of the temporal and spatial dynamics of COVID-19 cases in the State of Paraná (2020-2021).

3. Results

3.2. Relationship between COVID-19 and climate variability

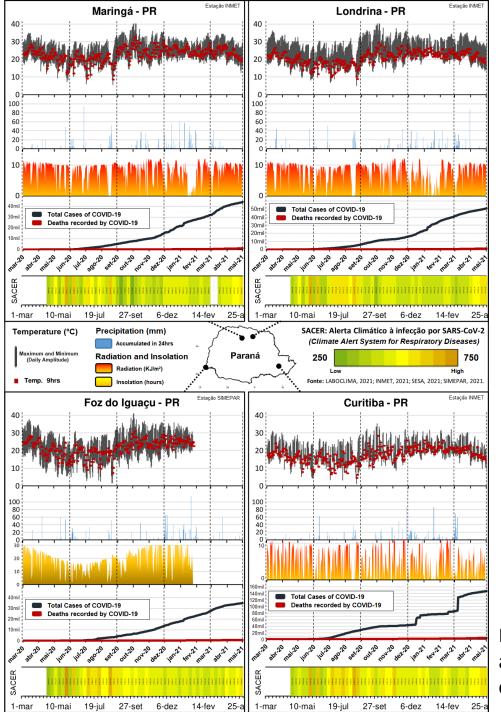
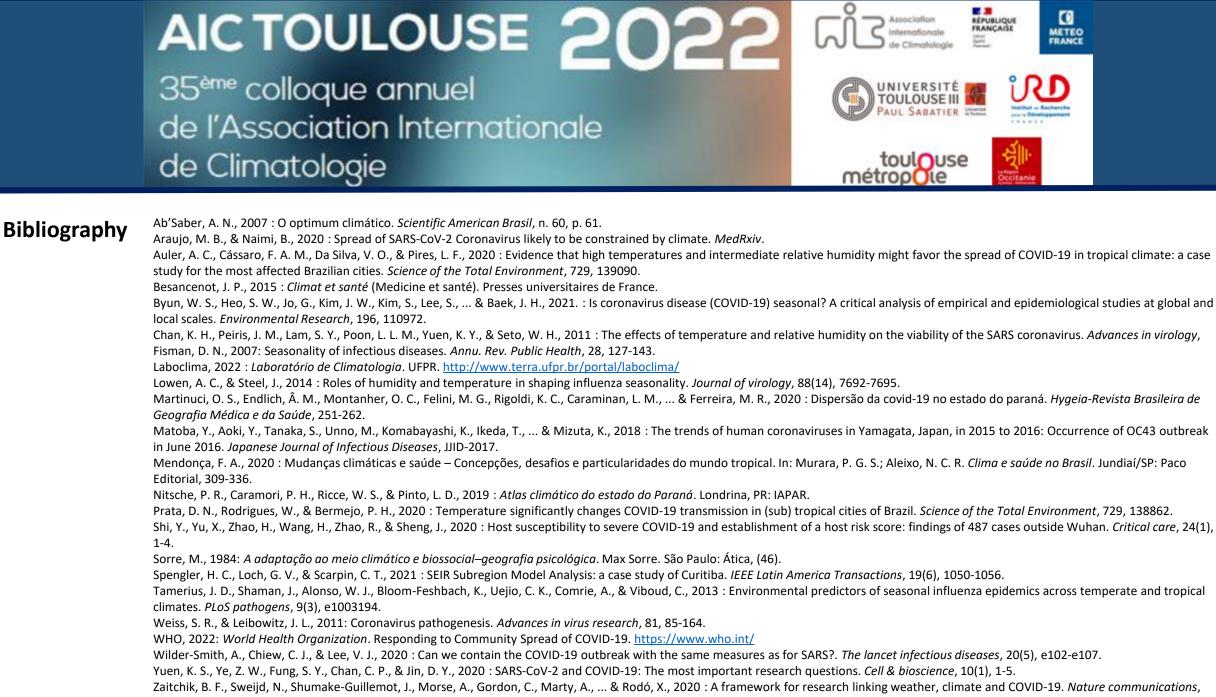



Figure 2. Climate and COVID-19: daily and weekly situation of the main cities in the State of Paraná.

4. Conclusion

- ✓ From the research carried out, it was possible to observe the dynamics of transmission of COVID-19 over time in the State of Paraná, as well as to highlight the variation in the number of cases/deaths in relation to atmospheric conditions and prevailing climate alert levels. Specifically, transmission was found to intensify during the autumn and winter season, although it was also important during spring and summer.
- ✓ Regarding this issue, the direct and indirect influences of the climate on the behavior of the population, especially with regard to social isolation, were evidenced in the study, considering them as complementary factors of a multicausal relationship. Based on the results obtained here, progress should be made in understanding the other factors for a better understanding of the dynamics of the pandemic, such as barrier gestures (respected or not), emergence of new variants of COVID-19, epidemiological and contagious aspects of the virus, and others, based on new scientific advances and recent literature.

11(1), 1-3.

Merci!

Francisco Mendonça

chico@ufpr.br

