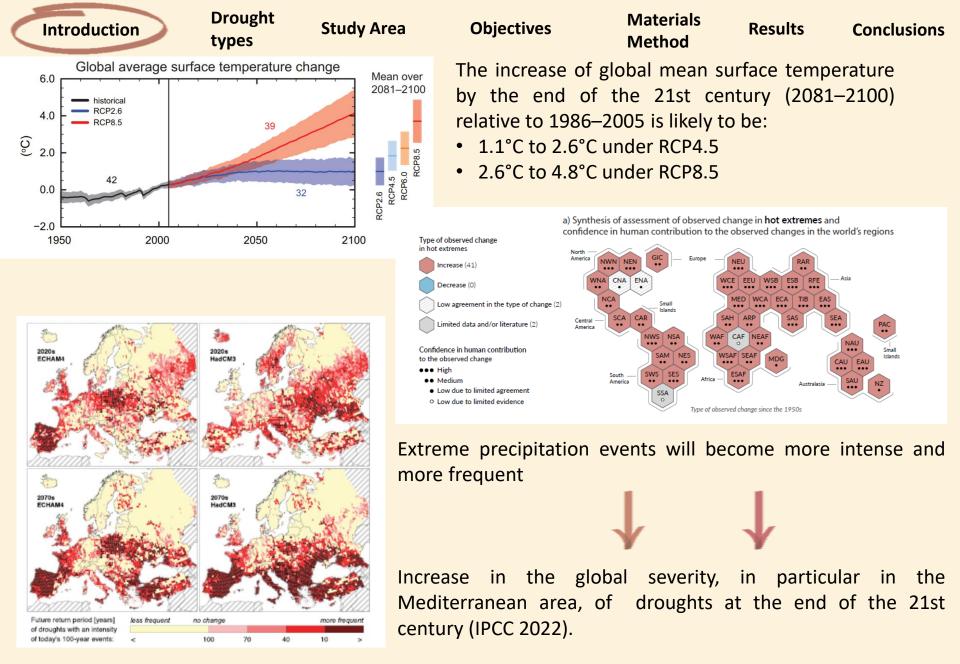
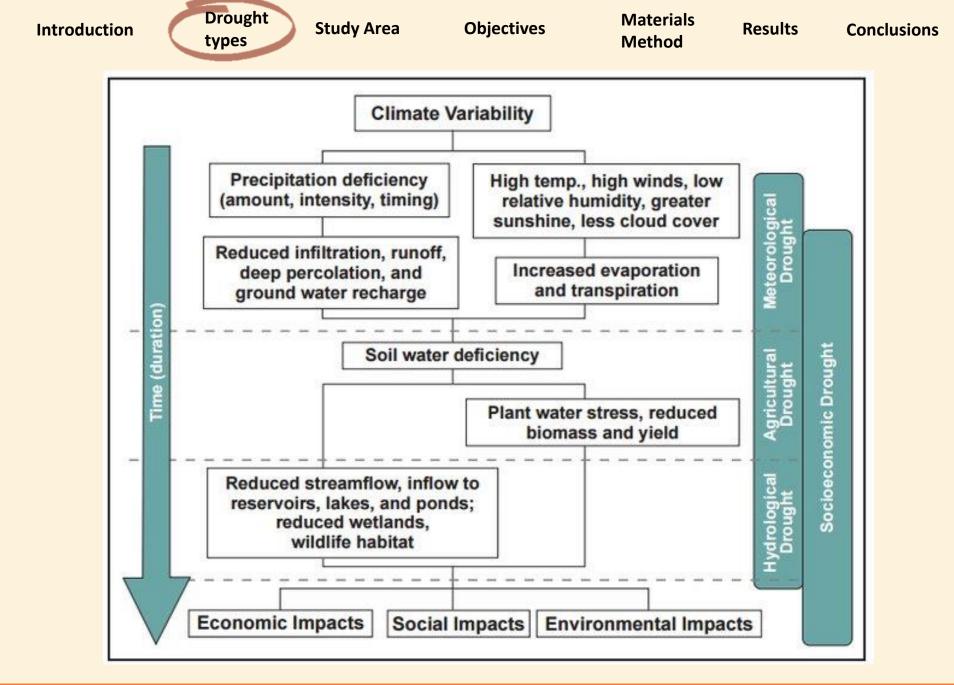


AIC TOULOUSE 2022

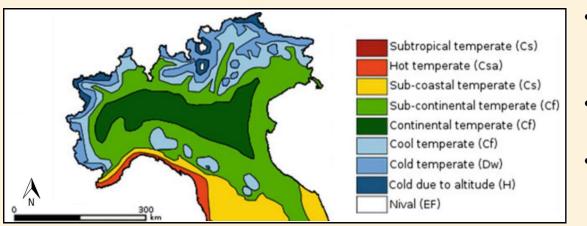
35ème colloque annuel de l'Association Internationale de Climatologie



6-9 Juliet 2022


MAPPING THE SPATIAL-TEMPORAL VEGETATION RESPONSE TO DROUGHTS IN NORTHERN ITALY

Pachauri et al., 2014

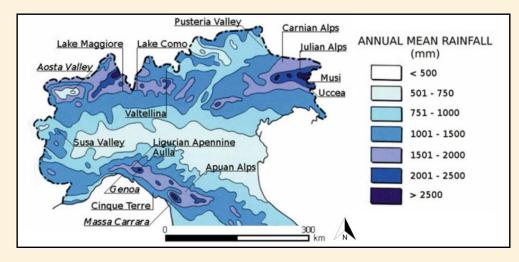

Drought types Study Area

Objectives

Materials Method

Results Conclusions

Northern Italy Climate

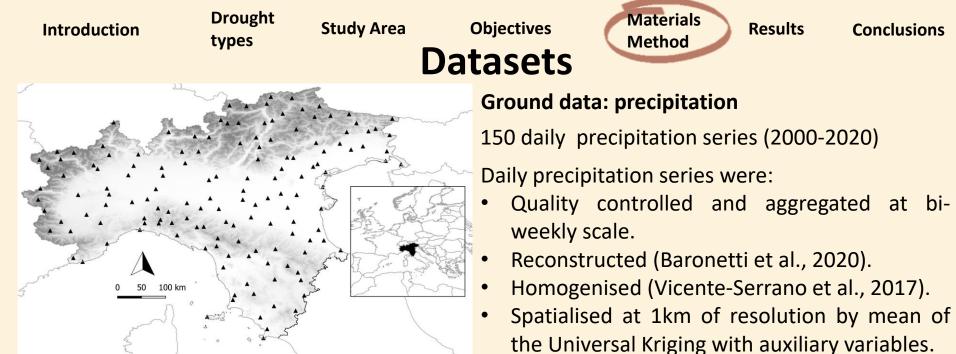

- Po Plain main climate Continaental Temperate (Cfa and Cfb)
- Alps Cool Temperate (Cf) and Cold Temperate(Dw)
 - Ligurian coast Sub-coastal temperate (Cs) and Hot temperate (Csa)

Three rainiest sectors:

- Carnian and Julian Alps (2500-3000mm)
- Occidental Alps (1700-2000 mm)
- Ligurian Apennines (2300 mm)

Po Valley east-west decrease (500-1000 mm)

Susa Valley, Pusteria Valley (500 mm)



Main Goals

For the 2000-2020 period:

- Investigate on the spatial distributions of the main bi-weekly drought events in northern Italy.
- Identify Spring-Summer drought impacts on vegetation greenness and communities using MODIS images.

48

46,7

Latitude (°N)

43.9

42,5

41,1

LST-Max 16-days

11,0

29,0

39 5

18,4

Longitude (°E)

°C

7,9

-2.7

-13.2

Modis products at 1km of spatial resolution:

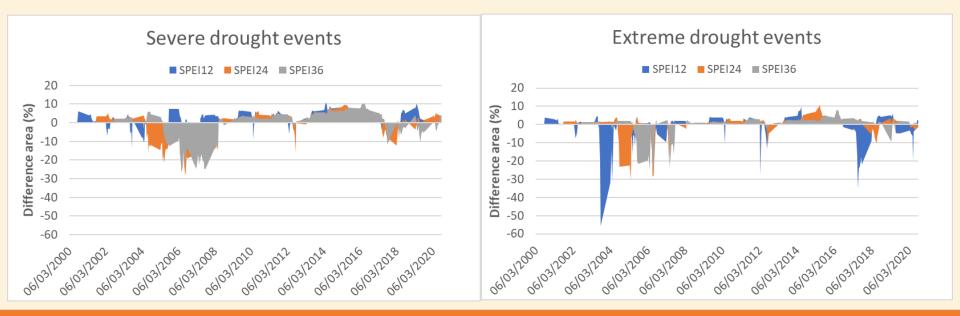
- 8-days Land Surface Temperature MOD11 (LST_Day and LST_Night)
- 16-days Normalized Difference Vegetation Index (NDVI) MOD13
- 16-days Enhanced vegetation index (EVI) MOD13
- CORINE Land Cover, MCD12

Pixels that included no data, low quality or were covered with clouds, were removed.

- Application of SPEI (Vicente-Serrano et al. 2010) and SPI (McKee et al., 1993) drought indices at 12, 24 and 36 months.
- Severe (<-1.28) and extreme (<-1.65) drought episode that interest at least 25% for 3 consecutive weeks were detected (Baronetti et al., 2018).
- Trend analysis using the Mann-Kendal test with 5% p-value.
- Creation of maps of drought duration for severe and extreme events.
- Pearson's correlation test between vegetation indices (NDVI, EVI) and drought indices (SPEI and SPI) at 12, 24 and 36 months (Gouveia et al., 2016).
- Investigation on the vegetation types most sensitive to drought events at 12, 24 and 36 months, by mean of the CORINE Land Cover product.

Drought types

Study Area


Objectives

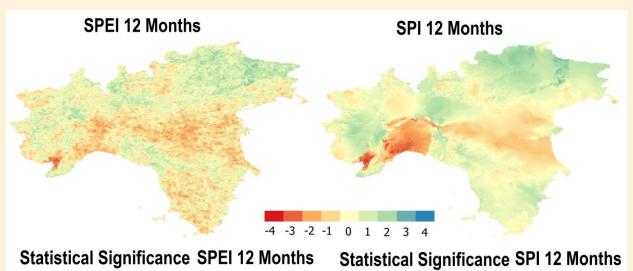
Materials Method

Results Conclusions

Main drought episodes

	SPEI					SPI	Concordance			
	Start	tart End Week %Area		Start End Week			%Area	between SPEI and SPI		
	12/07/2003	29/08/2003	8	29	12/07/2003	29/08/2003	8	45		
	05/03/2004	06/04/2004	8	30	05/03/2004	12/04/2004	8	40	indices	
	09/05/2005	18/08/2005	14	25	09/05/2005	28/08/2005	13	32		
	10/06/2006	26/06/2006	4	25	10/06/2006	26/06/2006	6	28	9 drought events	
≻	07/04/2007	23/04/2007	4	30	06/03/2007	09/05/2007	10	40		
	21/03/2012	06/04/2012	4	25	21/03/2012	06/04/2012	4	30		
	25/05/2014	10/06/2014	4	32	25/05/2014	10/06/2014	4	25	More extended SPI	
>	26/06/2017	29/08/2017	10	35	25/05/2017	29/08/2017	14	40	drought events.	
	25/06/2020	28/08/2020	8	25	24/05/2020	11/07/2020	8	25	C	

Drought types

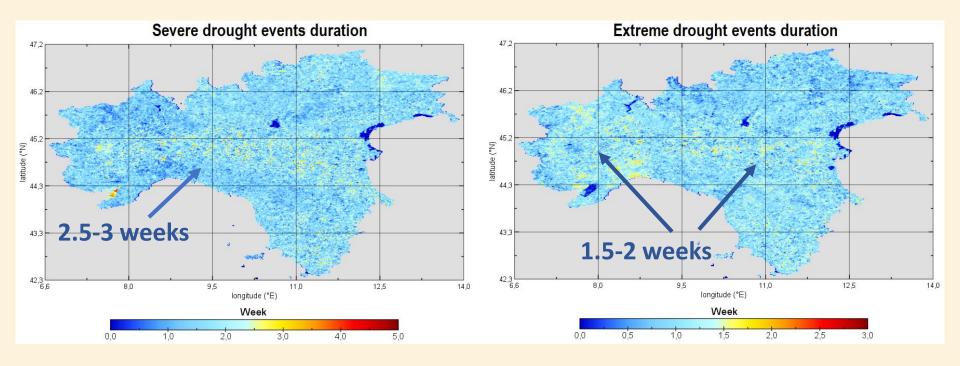

Study Area

Objectives

Materials Method Results Co

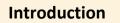
Conclusions

Spatial Drought Trends



Negative and significant trends in the Po Valley.

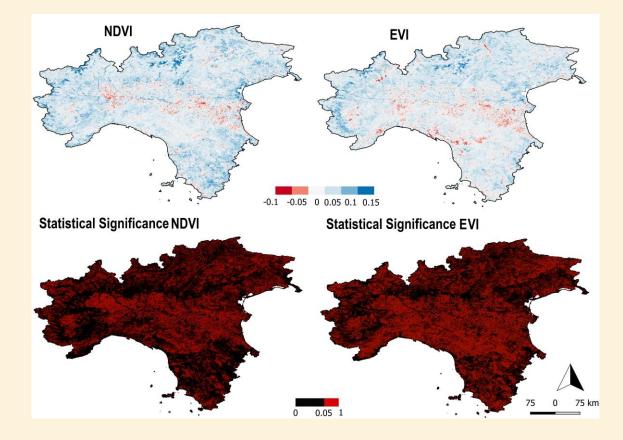
Negative and non-significant trends for the Tuscany hills.


Positive and significative trends in the eastern Alps.

The Po Valley is interested by the longest severe (2.5-3 weeks) and extreme (1.5-2 weeks) events.

Long extreme episodes (1.5-2 weeks) were also recorded in the Occidental Alps.

Drought types

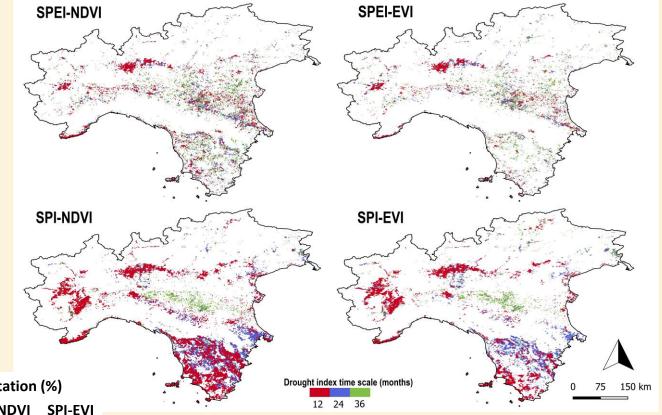

Study Area

Objectives

Materials Method Results

Conclusions

Spatial Vegetation Trends



Negative and nonsignificant trends for the plain (Po Valley) and Tuscany hills

Vegetation response to droughts

The strongest correlations were found in the Po Valley and the Tuscan hills

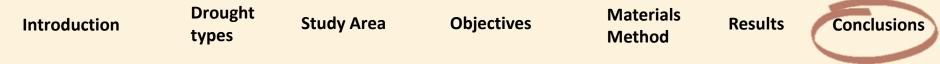
Timescale	Percentage of total vegetation (%)									
Innescare	SPEI-NDVI	SPEI-EVI	SPI-NDVI	SPI-EVI						
12 Months	5	3	9	7						
24 Months	7	4	13	9						
36 Months	10	7	18	13						

At long drought timescales, the percentage of involved vegetation area is double than at short timescales.

Study Area

Objectives

Materials Method


Results

Conclusions

Vegetation response to droughts

	SPEI-NDVI (%)			SPEI-EVI (%)			SPI-NDVI (%)			SPI-EVI (%)		
	12	24	36	12	24	36	12	24	36	12	24	36
Dense Forests	1.37	1.90	2.52	0.62	1.05	1.71	4.82	5.78	5.49	2.50	3.04	3.32
Evergreen Needleleaf Forests	3.13	4.20	4.76	2.26	2.88	3.57	7.46	8.40	8.40	5.01	6.08	5.45
Evergreen Broadleaf Forests	3.47	4.92	5.97	2.42	4.11	3.95	8.47	11.13	10.00	5.81	7.50	8.97
Deciduous Needleleaf Forests	4.09	5.42	6.37	2.66	3.71	3.71	9.13	11.22	10.17	6.27	7.51	8.80
Deciduous Broadleaf Forests	3.18	4.77	5.57	2.09	3.18	3.58	9.05	11.73	9.84	5.96	7.06	9.06
Broadleaf/Needleleaf Forests	3.25	4.24	5.12	1.97	2.56	3.15	8.67	11.03	9.16	5.91	7.29	8.02
Broadleaf Evergreen/Deciduous Forests	3.02	5.17	6.92	1.27	2.63	3.80	8.38	11.11	10.53	5.07	7.41	8.95
Open Forests	3.01	6.22	10.15	1.24	2.55	4.30	20.08	28.59	22.02	10.00	17.99	20.97
Sparce Forests	4.07	6.35	7.42	1.80	2.33	3.87	10.34	10.16	11.02	11.42	12.44	11.05
Forest /Cropland Mosaics	7.01	14.10	22.01	4.29	8.10	13.05	26.57	32.05	39.02	17.02	26.84	33.30
► Woody Wetlands	7.79	9.40	12.32	4.16	7.40	9.94	15.41	19.33	22.67	8.88	13.00	16.43
Herbaceous	5.45	6.20	7.71	1.64	2.75	3.24	7.86	8.73	9.35	5.17	6.96	7.94
Natural Herbaceous / Croplands Mosaics		8.60	15.62	3.23	5.64	10.58	14.85	18.48	26.82	10.03	15.66	19.68
Herbaceous Croplands	5.32	6.71	13.28	3.67	4.83	10.09	5.06	5.85	8.54	3.93	5.02	8.02

Forests and herbaceous mixed with croplands are the mostly sensitive vegetation types to droughts

To Conclude....

- Agreement between SPEI and SPI in the detection of nine drought episodes.
- In 2007 and in 2017 SPI used to detect events that are more spatially and temporally extended —> main triggering factor is the lack of precipitation.
- Po Plain and the Tuscan hills are the most sensitive areas to droughts with the strongest vegetation response.
- Vegetation responses in the main drought events shows that the effects are not exclusively correlated with temperature trends in Northern Italy (Marked in the Alps).
- Drought impacts are strictly linked with vegetation communities and human activities.
- High sensitivity to droughts was observed for all vegetation types mixed with croplands

 —> extension of monoculture (rice and maize) increased in the last sixty years.
- Minimal drought for the forest types -> increase of dry periods during the wet season could increase the potential risk for forest fires.

AIC TOULOUSE 2022

35ème colloque annuel de l'Association Internationale de Climatologie

6-9 Juliet 2022

THANK YOU!

alice.baronetti@igg.cnr.it

