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Abstract: The aim of this work was to develop early prediction models for cereal yields in Morocco, based on 
previous works that showed high linkage between cereal yields and various datasets including weather data 
(rainfall and air temperature), regional climate indices (North Atlantic Oscillation), and drought indices 
derived from remote sensing observation. The prediction models were developed using several machine 
learning algorithms. The results show that combining data from multiple sources outperformed models based 
on one dataset only. In addition, the remote sensing drought indices are a major source of information for 
cereal prediction when the forecasting is carried out close to harvest (2 months before), while weather data 
and, to a lesser extent, climate indices, are key variables for earlier predictions. The best models can 
accurately predict yield in January (4 months before harvest) with an R

2
 = 0.88 and RMSE around 0.22 t.ha-1. 

Keywords: Crop yield forecasting; Machine learning; Remote sensing drought indices; Climate indices. 

Résumé : L'objectif de ce travail est de développer des modèles de prévision précoce de rendement des 
céréales au Maroc, sur la base de travaux antérieurs qui ont montré un lien élevé entre le rendement des 
céréales et divers ensembles de données, y compris les données météorologiques (précipitations et 
température de l'air), les indices climatiques régionaux (Oscillation Nord-Atlantique), et les indices de 
sécheresse dérivés de l'observation par télédétection. Les modèles de prédiction ont été développés en 
utilisant plusieurs algorithmes d'apprentissage automatique. Les résultats montrent que la combinaison de 
données provenant de plusieurs sources a fourni de meilleurs résultats que les modèles basés sur un seul 
ensemble de données. En outre, les indices de sécheresse issus de la télédétection constituent une source 
d'information majeure pour la prévision des céréales lorsque la prévision est effectuée pas longtemps avant  
la récolte (2 mois avant), tandis que les données météorologiques et, dans une moindre mesure, les indices 
climatiques, sont des variables clés pour les prévisions antérieures. Les meilleurs modèles peuvent prédire 
avec précision le rendement en janvier (4 mois avant la récolte) avec un R2 = 0,88 et un RMSE d'environ 0,22 
t.ha-1. 

Mots-clés : Prévision du rendement des cultures ; Machine learning ; Indices de sécheresse par télédétection ; 
Indices climatiques. 

Introduction  

Climate change will affect global agricultural production in the future (Asseng et al., 2015) and it will 
threaten food security in several regions of the world including the Mediterranean areas, which have long 
been identified as a hotspot of climate change (Lionello and Scarascia, 2018). In addition to the change 
expected in average climate characteristics, including temperature and precipitation, the increased frequency 
of extreme events may further reduce agricultural production. Indeed, drought can be responsible for a loss 
in agricultural production of 10-35% depending on its intensity, duration, and spatial extent (Kogan, 2019). 
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The frequency and intensity of drought periods will increase in the future (Vicente-Serrano et al., 2020). In 
this context, accurate seasonal forecasting of crop yields is an important decision support tool to predict 
import needs as early as possible. In addition, it provides critical and timely information to enable farmers to 
make quick decisions to increase yields through improving agricultural practices during the growing season. 
Also, it allows to model global and local market prices (Peng et al., 2016). 

Crop growth models forced by seasonal weather forecasts and empirical regression-based models are the 
main widely applied methods to forecast crop yield (Basso and Liu, 2019). Crop growth models are able to 
describe crop growth and yield response to weather condition, soil, and management practices (Jones et al., 
2017). Thus, these models provide a good estimation of final crop yield, when the input variables and 
parameters are available throughout the growing season. The uncertainty of weather forcing data during, the 
period between the forecast date and end of the crop growing season is one of the main limitations when 
using these models to forecast the crop yield (Lawless and Semenov, 2005). On the other hand, a further 
challenge, is to provide the model with an accurate description of the crop, soil and the management 
practices through the numerous input parameters (pedology, information on crop type and variety, land use, 
sowing date, etc.). Given these main limitations, the majority of the national agriculture department use 
empirical regression-based models to forecast yield over large areas. These models rely on the use of some 
selected variables or indicators of environmental conditions (agrometeorological, and/or remotely sensed 
data) as independent variables to forecast crop yield (Balaghi et al., 2008; Kogan et al., 2013). The 
performance of the empirical models on forecasting crop yield is related to the availability of datasets 
(Martinez et al., 2009). Generally, the empirical models are simple and need fewer parameter settings 
compared to crop growth models. In addition, as the quantity and the quality of observed data have increased 
in recent years, these models forecast crop yield with reasonable accuracy (Kogan et al., 2013).  

In this context, the objective of this work is to develop early forecasting models for cereals yield in Morocco 
at the provincial scale using different data source and machine learning approaches.   

1. Materials and methods 

1.1. Study area 

In this study, we focus on the main cereal cropping region of Morocco (Figure 1a). Morocco is located at 
the southern edge of the mid-latitude storm track with a semi-arid climate (Driouech et al., 2010). The climate 
is influenced by the Atlantic Ocean, the Mediterranean Sea and the Sahara, together with very steep 
orography in the Atlas region. Most of the precipitation falls during winter and spring from the beginning of 
November until the end of April (Driouech et al., 2010). Cereals are one of the country’s main crops. It is 
cultivated both in rainfed and irrigated fields, depending on access to water supply and climate conditions. 
Cereals can be sown as early as November 1st if significant rainfall occurs. Nevertheless, a persistent drought 
at the beginning of the growing season can delay sowing until January 15th often leading to a production loss 
through a decrease of the wheat cropped areas as many farmers are used to wait for regular rainfall events 
to seed at the beginning of the season. Harvesting usually takes place around the end of May (Balaghi et al., 
2008). Cereal production in Morocco exhibits high inter-annual variability due to uncertain rainfall and 
recurrent drought periods, and this variability is expected to increase in the future due to the impact of 
climate change (Bouras et al., 2019). 

1.2. Methodology 

The data on cereal yield for 15 provinces were acquired from the Economic Services of the Ministry of 
Agriculture, 4 groups of provinces with similar cereal yield interannual variability are identified through a 
classification using the kmeans based on the correlative distance. The target variable is cereal yield and the 
potential predictors are satellite-based drought indices, weather data (rainfall and temperature) and climate 
indices derived from atmospheric and oceanic variables. Table 1 lists all the raw used datasets with their 
sources. For the satellite-based drought indices, the three widely used indices were selected, which are: the 
Vegetation Condition Index (VCI), the Temperature Condition Index (TCI) (Kogan, 1995) and the Soil Moisture 
Condition Index (SMCI) (Zhang and Jia, 2013). The VCI, TCI and SMCI are the normalized anomalies of 
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Normalized Difference Vegetation Index (NDVI), Land Surface Temperature (LST) and soil moisture (SM). 
Regarding the climate indices we have selected the North Atlantic Oscillation (NAO), the Scandinavian Pattern 
(SCA) and the tow leading modes of Sea Surface Temperature (SST), which are correlated with wheat yield in 
Morrocco (Jarlan et al., 2014). All these indices were camputed at monthly scale during the study periode 
from 2000 to 2017. 

          

figure 1:  The study areas with the 15 provinces and results of the four classifications (see text) (a) and the main inputs 
data and methodology used in this study (b). 

In order to build the seasonal forecasting models, we relied on Multiple Linear Regression, and three non-
linear machine learning algorithms extensively used for crop yield prediction (van Klompenburg et al., 2020) 
which are: Support Vector Machine (SVM), Random Forest (RF) and eXtreme Gradient Boost (XGBoost). An 
overview of the methodology is represented in the flowchart of Figure 1b.  

Table 1. Summary of the raw characteristics of the data sets used for cereal yield prediction. 

Category Product Variable Spatial 
Resolution 

Temporal 
Resolution Source 

Crop Yield    Crop yield Province level  Yearly 
Ministry of agriculture 

of Morocco 

Remote 
sensing 

 MOD13A2 NDVI 1 km 16-Day https://lpdaac.usgs.gov 
 MOD11A1 LST 1 km Daily 

ESA CCI SM  SM 25 km Daily 
https://www.esa-soilmoisture-

cci.org/ 

Weather ERA5 
Temperature, 

Rainfall 
30 km Daily 

https://www.ecmwf.int/en/for
ecasts/dataset 

Climate   NAO, SCA, SST    Monthly  https://psl.noaa.gov/  

2. Results  

2.1. Choose of inputs data sets 

 In order to identify the best combination of input data among the satellite-based drought indices, the 
weather data and the climate indices, the forecasting models of cereal yields were developed using the 
different combinations of inputs data from October to April  (about 1 month prior to harvest) in April. The 
statistical metrics for the different combination of input dataset and for the different methods are reported 

(a) (b) 

https://lpdaac.usgs.gov/
https://www.esa-soilmoisture-cci.org/
https://www.esa-soilmoisture-cci.org/
https://www.ecmwf.int/en/
https://psl.noaa.gov/data/%20climateindices/
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at Table 2. On average, the more input datasets are considered, the better prediction performances are 
achieved. In addition, all statistical metrics are improved when adding a dataset and this is also true for all 
the tested methods. The results showed that the yield variability is reasonably explained with satellite-based 
drought indices only with R² values ranging from 0.67 (for MLR) to 0.81 (for XGBoost), and RMSE from 0.66 
t.ha-1 (for MLR) to 0.44 t.ha-1 (for XGBoost). By combining satellite-based drought indices and weather data 
the performances of all models are improved by 2-7% for R² and by 25-30% for RMSE. The best statistical 
metrics are obtained by combining the three data sets with a further improvement of the statistical metrics 
by about 11-45% for RMSE and 4-10% for R² depending on the used method.  

Table 2. Statistical metrics (RMSE, MAE and R²) of the forecasting models for the three combination of input data from 
October to April (all correlation coefficients are significant at the 99% level). 

Inputs data Models RMSE (t. ha-1) MAE (t. ha-1) R² 

Satellite-based drought indices only 

MLR 0.66 0.57 0.67 
SVM 0.54 0.43 0.78 
RF 0.46 0.35 0.80 

XGBoost 0.45 0.34 0.81 

Satellite-based drought indices 
and weather data 

MLR 0.46 0.39 0.72 
SVM 0.40 0.31 0.80 
RF 0.34 0.24 0.84 

XGBoost 0.37 0.25 0.86 

Satellite-based drought indices, 
weather data and climate indices 

MLR 0.41 0.31 0.75 
SVM 0.25 0.21 0.88 
RF 0.22 0.19 0.92 

XGBoost 0.20 0.16 0.95 

2.2. Model performance as a function of lead time before harvest 

The performance of the forecasting models using the three datasets are evaluated as a function of the 
leading time prior to harvest from January to March (from 4 to 2 months before harvest). The RMSEs and R² 
of the models are plotted as a function of the lead time at figure 2 to investigate the prediction accuracy. In 
addition, the relative importance of each data set is reported in Table 2. 

The closer to harvest the forecast is carried out, the better the performance metrics as shown by the 
increase of the correlation coefficient and the drop of RMSE when going from January to March (Figure 2). 
The best method whatever the lead time is XGBoost as already shown followed closely by RF based 
approaches. The models based on XGBoost explain 88, 92 and 96% of yield variability (RMSE of 0.41, 0.34 and 
0.22 t.ha-1) for a forecasting from January, February and March, respectively. By contrast, the poorest results 
are obtained with MLR with a strong gap of metrics with regards to the non-linear machine learning 
approaches (R² is below to 0.75 for MLR while the correlations for the non-linear methods are above 0.90). 
While a slight improvement of the model metrics is observed when going from January to February, 
considering predictors in March leads to a significant jump in the metrics with RMSE close to the international 
standard of 0.20 t. ha-1 for the XGBoost method and, to a lesser extent for RF model. This is probably related 
to the very high correlation between NDVI around the crop development peak in March and wheat yields 
that was already shown by various authors (Belaqziz et al., 2014; Jarlan et al., 2014) giving a large weight to 
VCI at this time. The dominating importance of the satellite drought indices in March for the model based on 
XGBoost support this assumption (Table 3). 

Table 3. The importance of different inputs variables for cereal yield predition using XGBoost model at the national scale 
in January, February and March.  

Inputs data January  February March 
Satellite-based drought indices only 20% 35% 73% 

weather data 60% 53% 16% 
climate indices 20% 12% 11% 
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figure 2: The temporal progression (between January to March) of the model performance at the national scale, 
expressed by R² (lines) and RMSE (bars), based on the four methods (MLR, SVM, RF and XGBoost) and all inputs data. 
 

Other striking comments can be drawn by analyzing the importance of the three data sets: (1) the weather 
data dominates largely in January and, to a lesser extent, in February while a strong shift is observed in March 
when satellite drought indices take the lead over the two other data sets. This is in agreement with the already 
observed high correlation between yields and precipitation around emergence in October and November, 
and between yields and temperature in December during the tillering stage (Jarlan et al., 2014); (2) likewise, 
the importance of climate indices decreases with the lead time and their contribution is the lowest of the 
three data sets apart in January when it contributes to 20% like the satellite drought indices. Indeed, the 
highest correlation with yields was found in December and January for NAO and SCA, respectively while the 
correlations with the SST leading modes peak in October and February for “Atlantic Niño” and Atlantic Tripole 
modes, respectively. In addition, linkages between climate indices, in particular based on SST, and yields occur 
through teleconnection meaning that the relationships are indirect. This means that when good quality 
precipitation and temperature data are available, they should be preferred to climate indices as they provide 
more direct information on growing conditions; (3) satellite drought indices play a dominating role for an 
early prediction in March only when they contribute up to 73% on the prediction accuracy. Nevertheless, 
significant contribution is observed in February (35%) and in January (20%). This is because VCI and TCI was 
found to be significantly correlated to final yields in January and February, and because SMCI is significantly 
related to yields as early as October around the emergence stage (Bouras et al., 2020). Indeed, high moisture 
at the upper soil layers at this time facilitate and favorites the emergence and significant rainfall event during 
October-December promotes the farmer to seed leading to an increase of yields production (Balaghi et al., 
2013). 

Conclusion  

The results presented in this study clearly showed that combining satellite-based drought indices, weather 
data and climate indices is better predictors of cereal yield, and integrate these data into machine learning 
algorithms can provide useful tools to early forecast of cereal yield in Morocco. And it can be used as source 
of timely information needed to decision making during the growing season. However cereal yields may be 
related to other factors that were not considered in our study, such as sowing date, soil properties, and other 
management aspects. In particular, the sowing dates can shift the growing season with regards to the average 
growing period from November to May considered in this study. Finally, it is necessary to combine the 
empirical models developed in this study with a crop growth model in order to include climate change impacts 
on crop yield forecasting. 

Acknowledgement: This work was carried out within the framework of the Joint International Laboratory 
TREMA (https://www.lmi-trema.ma/). This work was founded by the ERANETMED03–62 CHAAMS project, 

https://www.lmi-trema.ma/


 
 
 

35ème colloque annuel de l’Association Internationale de Climatologie – AIC 2022 
 
 

 
 

the ACCWA project (grant agreement no: 823965). The H2020 PRIMA ALTOS project, MISTRALS/SICMED2, 
PHC Toubkal #39064WG/2018 and PRIMA-IDEWA project are also acknowledged for additional funding. 

Bibliography  
Asseng, S., Ewert, F., Martre, P., Rötter, R.P., et al., 2015: Rising temperatures reduce global wheat production. Nature 
Climate Change, 5, 143-147. 
Balaghi, R., Tychon, B., Eerens, H., Jlibene, M., 2008: Empirical regression models using NDVI, rainfall and temperature 
data for the early prediction of wheat grain yields in Morocco. International Journal of Applied Earth Observation and 
Geoinformation, 10 (4), 438-452. 

Basso, B., Liu, L., 2019: Seasonal crop yield forecast: Methods, applications, and accuracies. Advances in Agronomy, 154, 
201-255.  

Belaqziz, S., Mangiarotti, S., Le Page, M., Khabba, S., Er-Raki, S., Agouti, T., Drapeau, L., Kharrou, M.H., El Adnani, M., 
Jarlan, L., 2014: Irrigation scheduling of a classical gravity network based on the Covariance Matrix Adaptation - 
Evolutionary Strategy algorithm. Computers and Electronics in Agriculture, 102, 64-72.  

Bouras, E.H., Jarlan, L., Er-Raki, S., Albergel, C., Richard, B., Balaghi, R., Khabba, S., 2020: Linkages between rainfed cereal 
production and agricultural drought through remote sensing indices and a land data assimilation system: A case study 
in Morocco. Remote Sensing, 12, 1-35. 

Bouras, E., Jarlan, L., Khabba, S., Er-raki, S., Dezetter, A., Sghir, F., & Tramblay, Y. 2019: Assessing the impact of global 
climate changes on irrigated wheat yields and water requirements in a semi-arid environment of Morocco. Scientific 
Reports, 9, 1-15. 

Driouech, F., Déqué, M., Sánchez-Gómez, E., 2010: Weather regimes-Moroccan precipitation link in a regional climate 
change simulation. Global Planet Change, 72 (1-2). 

Jarlan, L., Driouech, F., Tourre, Y., Duchemin, B., Bouyssié, M., Abaoui, J., Ouldbba, A., Mokssit, A., Chehbouni, G., 2014: 
Spatio-temporal variability of vegetation cover over Morocco (1982-2008): Linkages with large scale climate and 
predictability. International Journal of Climatology, 34, 1245-1261. 

Jones, J.W., Antle, J.M., Basso, B., Boote, K.J., Conant, R.T., Foster, I., Godfray, H.C.J., Herrero, M., Howitt, R.E., Janssen, 
S., Keating, B.A., Munoz-Carpena, R., Porter, C.H., Rosenzweig, C., Wheeler, T.R., 2017: Toward a new generation of 
agricultural system data, models, and knowledge products: State of agricultural systems science. Agricultural Systems, 
155, 269-288. 

Kogan, F., 2019: Vegetation health for insuring drought-related yield losses and food security enhancement. In: Remote 
Sensing for Food Security. Sustainable Development Goals Series. Springer, Cham, 163-173.  

Kogan, F., Kussul, N., Adamenko, T., Skakun, S., Kravchenko, O., Kryvobok, O., Shelestov, A., Kolotii, A., Kussul, O., 
Lavrenyuk, A., 2013: Winter wheat yield forecasting in Ukraine based on Earth observation, meteorologicaldata and 
biophysical models. International Journal of Applied Earth Observation and Geoinformation, 23, 192-203. 

Kogan, F., 1995: Application of vegetation index and brightness temperature for drought detection. Advances in Space 
Research, 15 (11), 91-100.  

Lawless, C., Semenov, M.A., 2005: Assessing lead-time for predicting wheat growth using a crop simulation model. Agric. 
For. Meteorol., 135 (1-4), 302-313. 

Lionello, P., Scarascia, L., 2018: The relation between climate change in the Mediterranean region and global warming. 
Regional Environmental Change, 18 (5) . 

Martinez, C.J., Baigorria, G.A., Jones, J.W., 2009: Use of climate indices to predict corn yields in southeast USA. 
International Journal of Climatology, 29 (11), 1680-1691.  

Peng, Y.H., Hsu, C.S., Huang, P.C., 2016: Developing crop price forecasting service using open data from Taiwan markets, 
in: TAAI 2015 - Conference on Technologies and Applications of Artificial Intelligence.  

Van Klompenburg, T., Kassahun, A., Catal, C., 2020: Crop yield prediction using machine learning: A systematic literature 
review. Computers and Electronics in Agriculture, 177, 105709.  

Vicente-Serrano, S.M., Quiring, S.M., Peña-Gallardo, M., Yuan, S., Domínguez-Castro, F., 2020: A review of environmental 
droughts: Increased risk under global warming? Earth-Science Reviews, 201, 102953. 



 
 
 

35ème colloque annuel de l’Association Internationale de Climatologie – AIC 2022 
 
 

 
 

Zhang, A., Jia, G., 2013: Monitoring meteorological drought in semiarid regions using multi-sensor microwave remote 
sensing data. Remote Sensing of Environment, 134, 12-23.  


	Introduction
	1. Materials and methods
	1.1. Study area
	1.2. Methodology
	2. Results
	2.1. Choose of inputs data sets
	2.2. Model performance as a function of lead time before harvest
	Conclusion
	Acknowledgement: This work was carried out within the framework of the Joint International Laboratory TREMA (https://www.lmi-trema.ma/). This work was founded by the ERANETMED03–62 CHAAMS project, the ACCWA project (grant agreement no: 823965). The H...
	Bibliography

