15th International Meeting on Statistical Climatology (IMSC) Preliminary detailed agenda (22 April 2024) | Monday 24 J
09:00-10:45 | Registration & welcome coffee | | | | |----------------------------|---|--|---|--| | 10:45-11:00 | Opening | | | | | 10:45-11:00 | · · · · · · · · · · · · · · · · · · · | | | | | 11.00 12.20 | S01: Climate Records (Chair: N. Lenssen, X. Wang) | | | | | 11:00-12:30 | S09: Extreme value analysis methods and theory for climate applications (Chair: W. Huang, G. Toulemonde) Location: Amphitheatre | | | | | 11:00-11:45 | (S09) Modeling of spatial extremes in environmenta | Il data science: Time to move away from max-stable p | rocesses. R. Huser | | | 11:45-12:30 | (S01) Improved Homogenisation of Observations Sh | ows Steadier and Faster Historical Global Warming. D | . Chan | | | 12:30-14:00 | Lunch break and Posters | | | | | 14:00-15:40 | S06: Statistical and machine learning in climate science Location: Amphitheatre Chair: B. Balogh, SK. Min | S01: Climate records Location: Prudhomme Chair: N. Lenssen, X. Wang | S09: Extreme value analysis methods and theory for climate applications Location: <i>Der Megreditchian</i> Chair: W. Huang, G. Toulemonde | | | 14:00-14:15 | Filling gaps in historical extremes using Artificial Intelligence R. Dunn | Advancements in Changepoint Analysis and Its Impact on Climate Time Series X. Shi | Linear regression for mutlivariate extremes with application to climate sciences P. Naveau | | | 14:15-14:30 | Mitigating bias in climate projections of extreme precipitation over West Africa using machine learning I. Okeyode | Has there been a recent acceleration in global warming? C. Beaulieu | A statistical test for changes in compound extreme events S. Engelke | | | 14:30-14:45 | Multi-Model Ensemble Projection of Global Precipitation and Temperature Changes Utilizing machine learning M. Li | Climatic warming in Shanghai over the recent 150 years based on homogenised temperature records P. Liang | Asymmetric dependence in hydrological extremes C. Deidda | | | 14:45-14:48 | Multi-model Ensemble Prediction of Summer Precipitation in China Based on Machine Learning Algorithms J. Yang | Development of Climatological Normal 1991-2020 for
the Indonesia Region Y. Fajariana | Large Scale Influence on Extreme Precipitation F. Fauer | | | 14:48-14:51 | Short-term Prediction of Extreme Sea-Level at the Baltic
Sea Coast by Random Forests B. Hünicke | MapEval4OceanHeat (ME4OH): an objective assessment of mapping methods used to estimate ocean heat content change M. Palmer | Validation study for modeling extreme precipitation using a Bayesian hierarchical framework A. Rischmüller | | | 14:51-14:54 | | Spatial interpolation of seasonal precipitations in a complex topographical region - comparing several statistical models V. Dura | Attribution of global fire weather extremes using UK Earth System Model Z. Liu | | | 14:55-15:10 | Unraveling individual and joint effects of large-scale climate modes and surface weather features on streamflow in the Murray River, Australia B. Bates | Sector specific extension to an extremes indices dataset and comparisons to reanalyses R. Dunn | Conditional Decomposition Approach for Modeling
Multivariate Extreme Events W. Huang | | | 15:10-15:25 | Stochastic emulation of weather radar images time-
series using generative AI F. Guéguéniat | A noisy-input generalised additive model for relative sea-level change along the Atlantic coast of North America M. Upton | Modeling moderate and extreme urban rainfall at high spatio-temporal resolution C. Serre-Combe | | | 15:25-15:40 | Effect of Climate Change on Temporal and Spatial
Variability of Vulnerability and Flood Hazard H. Moradi | Uncertainty characterization of Mean Sea Level measurements from satellite radar altimetry P. Prandi | Integration of physical bound constraints to alleviate shortcomings of statistical models for extreme temperatures R. Noyelle | |-------------|--|--|---| | 15:40-16:20 | Coffee break and Posters | | | | 16:20-18:00 | S06: Statistical and machine learning in climate science Location: <u>Amphitheatre</u> Chair: B. Balogh, SK. Min | S01: Climate records Location: Prudhomme Chair: N. Lenssen, X. Wang | S09: Extreme value analysis methods and theory for climate applications Location: Der Megreditchian Chair: W. Huang, G. Toulemonde | | 16:20-16:35 | Higher-order internal modes of variability imprinted in year-to-year California streamflow changes S. Duan | Locally Stationary Mapping and Uncertainty Quantification of Ocean Heat Content Based on Argo Profiles During 2004-2022 M. Kuusela | Flood risk modelling using geometric extreme value theory L. De Monte | | 16:35-16:50 | Detection and Characterization of Future Climate Extremes with Deep Learning A. Durif | Propagation of uncertainties from space geodetic measurements to the global ocean heat content and the earth energy imbalance M. Ablain | Robust extreme value analysis by semiparametric modelling of the entire distribution range F. Kwasniok | | 16:50-17:05 | Random Forest Based Tropical Cyclone Detection P. Vaittinada Ayar | A non-stationary geostatistical model for the stochastic interpolation of daily rain gauge observations in mountain areas L. Benoit | An appraisal of the value of simulated weather data for quantifying coastal flood hazard in the Netherlands C. De Valk | | 17:05-17:08 | Generating multivariate extremes using score-based generative networks and normalizing flows J. Wessel | Comparison of changepoint methods for homogenization of precipitation H. Alharthi | Optimizing the process of ensemble boosting using tailored iterative algorithms L. Bloin-Wibe | | 17:08-17:11 | Incorporating physical knowledge to emulate the parameterizations of the IPSL model S. Crossouard | Atmospheric Features via Topological Data Analysis L. Seymour | The impact of two different atmospheric circulation patterns in Asia on low temperature events in Yunnan during winter H. Yan | | 17:11-17:14 | Unraveling heatwave drivers using causal inference and climate model experiments D. Schumacher | Calculation of Irelands LTA grids 1961-2020 B. Coonan | The social psychological attribution of event attribution D. Stone | | 17:15-17:30 | Enhancing local climate study through RCM-Emulator:
Downscaling a large ensemble of GCM simulations for
extreme event analysis A. Doury | On the automatic application of a standard and enhanced quality control process for daily precipitation since 1960s in South America A. Huerta | Simulation of Extreme Events in Climate Models with Rare Event Algorithms F. Ragone | | 17:30-17:45 | Using AI to estimate the dynamical contribution to European temperature variability. E. Cariou | A new statistical method for the homogenization of GNSS Integrated Water Vapour time series N. Nguyen | Development of a global empirical-statistical framework for the probabilistic assessment of wildfire risk in a changing climate Z. Liu | | 17:45-18:00 | Identification of ENSO and IOD Impact on Average Monthly Rainfall in Indonesia Maritime Continent by Machine Learning R. Putra | Intercomparison of climatologies and trends in ocean precipitation across multiple datasets M. Bador | What are the hottest events between now and the end of the century? Y Robin | | 18:00-20:00 | Icebreaker | | | | Tuesday 25 J | | | | |--------------|--|--|--| | 09:00-10:30 | S05: Statistics for climate models, ensemble design, uncertainty quantification, model tuning (Chair: T. DelSole, J. Salter, L. Terray) S03: Space-time statistical methods for modelling and analysing climate variability (Chair: D. Allard, B. Li) Location: Amphitheatre | | | | 09:00-09:45 | (S05) Multi-century disaster gaps followed by strong clusters of extreme precipitation – understanding the irregular occurrence of local heavy rainfall E. Fischer | | | | 09:45-10:30 | (S03) Dynamic soil water for estimating degradation and restoration of soil health: A changepoint approach Detection of spatiotemporal changepoints in air quality – a generalised additive model approach R. Killick | | | | 10:30-11:00 | Coffee break and Posters | | | | 11:00-12:30 | S06: Statistical and machine learning in climate science (Chair: B. Balogh, SK. Min) S08: Attribution and analysis of single weather events (Chair: E. Fischer, M. Kirchmeier-Young) Location: Amphitheatre | | | | 11:00-11:45 | (S06) Interpretable stochastic weather generator, ag | oplication to a crop model, and climate change analys | is D. Metivier | | 11:45-12:30 | (S08) Predicting the counterfactual: challenges and | opportunities of forecast-based attribution N. Leach | | | 12:30-14:00 | Lunch Break and Posters | | | | | S08: Attribution and analysis of single weather | S06: Statistical and machine learning in climate | S05: Statistics for climate models, ensemble | | 14:00-15:40 | events | science | design, uncertainty quantification, model tunin | | | Location: <u>Amphitheatre</u> Chair: E. Fischer, M. Kirchmeier-Young | Location: <u>Prudhomme</u>
Chair: B. Balogh, SK. Min | Location: <u>Der Megreditchian</u>
Chair: T. DelSole, J. Salter, L. Terray | | 14:00-14:15 | How extreme were daily global temperatures in 2023? J. Cattiaux | From climate to weather reconstruction with inexpensive neural networks M. Wegmann | Tuning Earth System Models Without Integrating to Statistical Equilibrium T. DelSole | | 14:15-14:30 | Synthesis of multi-model attribution results - Formally combining different lines of evidence in extreme event attribution F. Otto | Identifying probabilistic weather regimes targeted to a local-scale impact variable F. Spuler | Calibration with unknown discrepancy J. Salter | | 14:30-14:45 | Comparison of Results from Different Event Attribution Techniques for an Attribution Service P. Hope | Global-scale evaluation of classifications methods for atmospheric circulation J. Fernandez-Granja | Uncertainty characterisation for time series from ensembles of climate projections R. Chandler | | 14:45-14:48 | Attribution of extreme weather events over Germany J. Schröter | Anomaly detection in daily temperature fields in Europe using VAEs: A new climate change attribution approach P. Zaninelli Garcia | Characterising spatial structure in climate model ensembles R. Chandler | | 14:48-14:51 | Recent developments from World Weather Attribution C. Barnes | Separating Internal Variability from Anthropogenic Forcing Using Artificial Intelligence D. Techer | | | 14:51-14:54 | On the storyline and likelihood for spatially compound flood-heat-flood events based on ensemble boosting Y. Guo | | | | 14:55-15:10 | A quasi-operational event attribution system for hot extremes in Canada N. Gillett | Analysis of extreme-temperature events over the Southern Africa region: Synoptic systems of heat waves and extreme hot days using Self-Organizing Maps P. Jubase | Using rare event algorithms to understand the statisti and dynamics of extreme events C. Le Priol | | 15:10-15:25 | Quasi-operational extreme event attribution at Beijing Climate Center Y. Sun | Identification of hydrometeorological drivers of forest damage in Europe P. Rivoire | Huge Ensembles of Weather Extremes using the Fourier Forecasting Neural Network W. Collins | |-------------|--|---|---| | 15:25-15:40 | Translating historical extreme weather events into a warmer world E. Hawkins | Generative Modelling for Multivariate Downscaling via
Proper Scoring Rules M. Schillinger | Simulating extreme weather events with high-
resolution large climate model ensembles and neural
networks P. Watson | | 15:40-16:20 | Coffee break and Posters | | | | 16:20-18:00 | S08: Attribution and analysis of single weather events Location: Amphitheatre Chair: E. Fischer, M. Kirchmeier-Young | S01: Climate records Location: Prudhomme Chair: N. Lenssen, X. Wang | S05: Statistics for climate models, ensemble design, uncertainty quantification, model tuning Location: Der Megreditchian Chair: T. DelSole, J. Salter, L.Terray | | 16:20-16:35 | A simple hybrid method to translate past weather events into the future climate J. Boé | Monthly Mean Surface Wind Speed Data Homogenization and Trend Characterization X. Wang | Constraining Regional Precipitation Projections by Benchmarking Model Performance R. Isphording | | 16:35-16:50 | The Effect of a Short Observational Record on the Statistics of Temperature Extremes O. Pasche | Satellite derived trends and variability of CO2 concentrations in the Middle East during 2014–2023 R. Fonseca | Filling the GCM/RCM matrix O. Christensen | | 16:50-17:05 | Probability estimation for long return period hot extremes using a large ensemble of model simulations Y. Liang | Reassessing the highest temperature recorded in Ireland at Kilkenny Castle on 26 June 1887 M. Curley | Beyond Multi-Model Means: Leveraging Local Model Strengths for Superior Climate Projections L. Schmutz | | 17:05-17:08 | Impact of anthropogenic climate change on the frequency and intensity of extreme events in France in the context of conditional attribution C. Nadelsi | A NASA GISTEMPv4 Observational Uncertainty Ensemble N. Lenssen | | | 17:08-17:11 | Perils, pitfalls, and proposals for extreme wind attribution based on the example of the 2022 Hurricane Fiona E. Malinina | Extending the Observational Record of Compound Drought and Heatwave Events for Future Risk Management K. Taylor | | | 17:11-17:14 | Probabilistic attribution analysis and future risk assessment of the extreme meteorological conditions associated with the 2022 Euro-Mediterranean wildfires Z. Liu | | | | 17:15-17:30 | Global emergence of unprecedented lifetime exposure to climate extremes W. Thiery | An apparent multi-decadal global ocean cold anomaly in the early twentieth century temperature record S. Sippel | Constrained CMIP6 future climate projections over the Euro-Mediterranean region based on a circulation patterns approach M. Olmo | | 17:30-17:45 | Causal Attribution of Arctic Extreme Fire Weather Events to Anthropogenic Forcings L. Fielder | Sensitivity of Percentile-Based Extreme Temperature Indices: Implications for Climate Change Monitoring in an Era of Accelerated Warming Y. Yosef | Recent and Projected Changes in Climate Patterns in an extended Middle East and North Africa Region R. Fonseca | | 17:45-18:00 | Attribution of area burned and other fire season characteristics: an example from the 2023 Canadian wildfire season M. Kirchmeier-Young | Assessing Seasonal Rainfall Trend in Federal Capital
Territory (FCT) Abuja Nigeria A. Anokwu | Assessment of the LMDZ model to the dynamic and thermodynamic properties of cyclogenesis in the tropical Atlantic Ocean and on the West African coast D. Gueye | | Wednesday 2 | 26 June 2024 | | | | |-------------|--|--|--|--| | 09:00-10:30 | S04: Weather/climate forecasting, predictability and forecast evaluation (Chair: K. Lawal, D. Specq) S10: Changes in extremes including temperature, hydrologic, and multi-variate compound events (Chair: Q. Sun, X. Zhang, J. Zscheischler) Location: Amphitheatre | | | | | 09:00-09:45 | (S04) Strong El Niño events lead to robust multi-year ENSO predictability N. Lessen | | | | | 09:45-10:30 | (\$10) Can past analogue events inform on climate ri | | | | | | | sk G. negeri | | | | 10:30-11:00 | Coffee break and Posters | | | | | 11:00-12:30 | _ | rgent constraints on future climate projections (Ch
hydrologic, and multi-variate compound events (C | | | | 11:00-11:45 | (S07) Thirty years of optimal fingerprinting: What h | | | | | 11:45-12:30 | | ine learning to model and understand spatially comp | ounding extremes J. Koh | | | 12:30-14:00 | Lunch Break and Posters | . , , | | | | 14:00-14:55 | S08: Attribution and analysis of single weather events Location: Amphitheatre Chair: E. Fischer, M. Kirchmeier-Young | S04: Weather/climate forecasting, predictability and forecast evaluation Location: Prudhomme Chair: K. Lawal, D. Specq | S07: Long-term detection and attribution and emergent constraints on future climate projections Location: Der Megreditchian Chair: C. Li, D. Stone | | | 14:00-14:15 | Exploring unprecedented hot-dry events in Aotearoa
New Zealand L. Harrington | Spatial Trends of Convective Available Potential Energy (CAPE) over Bangladesh and its eight regions for 40 years (1982- 2021) S. Kader | Granger causal inference for climate change attribution M. Wehner | | | 14:15-14:30 | Towards compound extreme event attribution: hot and dry events in Belgium C. Deidda | Linear-Cost Vecchia Approximation of Multivariate Normal Probabilities J. Cao | Reducing the uncertainty of projected changes in extreme precipitation F. Zwiers | | | 14:30-14:45 | Human influences on spatially compounding flooding and heatwave events and future increasing risks C. Qian | The Influence of Solar Activity on Snow Cover over the Qinghai–Tibet Plateau and Its Mechanism Analysis Y. Song | A Statistical Review on the Optimal Fingerprinting Approach in Climate Change Studies S. Chen | | | 14:45-15:40 | \$10: Changes in extremes including temperature, hydrologic, and multi-variate compound events Location: Amphitheatre Chair: Q. Sun, X. Zhang, J. Zscheischler | S04: Weather/climate forecasting, predictability and forecast evaluation Location: Prudhomme Chair: K. Lawal, D. Specq | S07: Long-term detection and attribution and emergent constraints on future climate projections Location: Der Megreditchian Chair: C. Li, D. Stone | | | 14:45-14:48 | Assessment of recent trends in climate extremes over Kano State, Nigeria using statistical techniques H. Rasaq | Seasonal Forecast of precipitation during winter season Using Climate Predictability Tool (CPT) over Ethiopia A. Mostafa | Detection and attribution, optimal fingerprinting, atmospheric climate models, and Aoteaora New Zealand D. Stone | | | 14:48-14:51 | Projected Changes in Hot, Dry, and Compound Hot-Dry Extremes Over Global Land Regions P. De Luca | Operational seasonal prediction over Europe using multiple scenarios from a multi-model ensemble forecast D. Specq | Quantifying Earth's historical feedback using statistical learning on sea-surface temperature patterns G. Gyuleva | | | 14:51-14.54 | Frameworks for considering extreme weather risks in future climates given major uncertainties P. Watson | Advanced pattern techniques in weather and climate science F. Kwasniok | | | | 14:55-15:10 | Modelling back-to-back extreme rainfall events K. Saunders | The dynamics of persistent hotspells in European summers D. Pappert | The Detection and Attribution Model Intercomparison Project: CMIP6 highlights and plans for CMIP7 N. Gillett | | | 19:30-23:00 | Conference Dinner | 1 | 1 | |-------------|--|--|---| | | | | | | 17:45-18:00 | precipitation using non-stationary extended generalized
Pareto distribution A. Haruna | model ensemble seasonal forecast compare to the traditional SARCOF consensus outlook? P. Wolski | projections C. Li | | 17.45 10.00 | Joint assessment of trends in the bulk and extreme | Human against the machine - how does a modern multi- | Reconciling the "hot model" problem in climate | | 17:30-17:45 | Anthropogenic increase in precipitation variability over the past century W. Zhang | Optimal transport for the multi-model combination of sub-seasonal ensemble forecasts C. Le Coz | Accounting for Pacific climate variability increases projected global warming Y. Liang | | 17:15-17:30 | Regional climate change for East Asia and Europe based on homogenized daily observations Z. Li | Constraining near to mid-term climate projections by combining observations with decadal predictions R. Bonnet | Relating observational constraints and data assimilation A. Ribes | | 17:11-17:14 | Cluster of storms and insurance impact L. Hasbini | A Fuzzy Neural Network Bagging Ensemble Forecasting
Model for 72-hour Forecast of Low-temperature Chilling
Injury H. Lu | | | 17:08-17:11 | Detection and characterisation of the compound drought and heatwave event of spring-summer 2022 in the Adige River catchment (north-eastern Italy). M. Lemus-Canovas | Dynamic-statistical downscaling method for annual precipitation prediction in Yangtze River Basin and its application Y. Yang | Impacts of natural and anthropogenic forcings on historical and future changes in global-land surface air temperature in CMIP6–DAMIP simulations T. Zhao | | 17:05-17:08 | Trends in severity of heat waves: an added value of three-dimensional (3D) insight O. Lhotka | Statistical downscaling of long-term summer temperature forecasts for Czechia S. Kliegrova | Progress in the detection and attribution of regional climate change D. Stone | | 16:50-17:05 | Unprecedented regional trends in extreme weather until 2040, even under strong mitigation C. Iles | Improving sub-seasonal wind-speed forecasts in Europe with a non-linear model G. Tian | Time of Emergence Analysis in Climate Science A. Borowiak | | 16:35-16:50 | Constraining decadal variability regionally improves near-term projections of hot, cold and dry extremes P. De Luca | Improving MOS Random Forests for Post-processing Extreme Wind Gust Forecasts B. François | Non-Parametric Climate Change Detection and Attribution: A Sequential Approach S. Gailliot | | 16:20-16:35 | Heat waves trends and patterns in West Africa:
definitions and drivers D. Aderotoye | Probabilistic forecasting of cloud base height and visibility using Quantile Regression Forests, based on NWP and observation features M. Schmeits | Moving from empirical emergent constraints to more robust Bayesian statistics: a case study on land surface drying H. Douville | | 16:20-18:00 | S10: Changes in extremes including temperature, hydrologic, and multi-variate compound events Location: Amphitheatre Chair: Q. Sun, X. Zhang, J. Zscheischler | S04: Weather/climate forecasting, predictability and forecast evaluation Location: Prudhomme Chair: K. Lawal, D. Specq | S07: Long-term detection and attribution and emergent constraints on future climate projections Location: Der Megreditchian Chair: C. Li, D. Stone | | 15:40-16:20 | Coffee break and Posters | Ţ | T | | 15:25-15:40 | Assessing Precipitation Intensity-Duration-Frequency Curves under Climate Change in Local Scale Catchments L. Bravo de Guenni | Seasonal Forecasts of Winter Temperature Improved by Higher-Order Modes of Mean Sea Level Pressure Variability in the North Atlantic Sector C. Dalelane | Detection and attribution of climate change using paleoclimate observations directly M. Evans | | 15:10-15:25 | Non-stationarity of the multi-temporal severity of meteorological drought in France J. Blanchet | Subseasonal and Seasonal drivers of European winter weather M. Kretschmer | An emergent constraint approach for making climate projections of Antarctic sea ice area decay D. Stephenson | | Thursday 27 | | | | |-------------|---|--|---| | 09:00-10:30 | S03: Space-time statistical methods for modelling and analyzing climate variability (Chair: D. Allard, B. Li) S07: Long-term detection and attribution and emergent constraints on future climate projections (Chair: C. Li, D. Stone) Location: Amphitheatre | | | | 09:00-09:45 | (S03) Bayesian nonparametric emulation and calibra | ation of climate models M. Katzfuss | | | 09:45-10:30 | (S07) Unraveling the Impact of Greenhouse Gases a | nd Aerosols on Changes in Extreme Rainfall C. Bonfils | | | 10:30-11:00 | Coffee break and Posters | | | | 11:00-12:40 | S10: Changes in extremes including temperature, hydrologic, and multi-variate compound events Location: Amphitheatre Chair: Q. Sun, X. Zhang, J. Zscheischler | S04: Weather/climate forecasting, predictability and forecast evaluation Location: Prudhomme Chair: K. Lawal, D. Specq | S07: Long-term detection and attribution and emergent constraints on future climate projection Location: Der Megreditchian Chair: C. Li, D. Stone | | 11:00-11:15 | A multi-variate measure of climate change emergence A. King | Verification of full distributions on decadal timescales A. Düsterhus | Detection and attribution of urbanization forcing on urban and regional hot extremes Y. Chen | | 11:15-11:30 | Increasing frequency, intensity, duration and areal extent of extreme precipitation events in Japan since 1900 CT. Chen | Extracting latent variables from forecast ensembles and advancements in similarity metric utilizing optimal transport S. Nishizawa | Anthropogenic influence on temperature change in China over the period 1901-2018 H. Yin | | 11:30-11:45 | Understanding correlation of wind and precipitation annual aggregate severity of European cyclones T. Jones | Forecast quality assessment of multi-annual predictions of mean and extreme temperature and precipitation: multi-model evaluation and impact of model initialisation C. Delgado-Torres | Detecting human influence on precipitation in Canada X. Zhang | | 11:45-11:48 | A storyline of the intense Mediterranean heavy precipitation event and storm Alex occurring in 2022 instead of 2020, with warmer sea surface temperatures M. Bador | Verification of extreme wet and dry cases in Brazil predicted by ECMWF S2S model I. Cavalcanti | Projected Global Temperature Changes after Net Zero are Small but Significant A. Borowiak | | 11:48-11:51 | Record-breaking and record-shattering extremes in a warming climate E. Fischer | A new method for correcting model biases in decadal forecasts E. Sanchez Gomez | Attribution of long-term trends in the Western Mediterranean: exploring regional aspects D. Campos Diaz | | 11:51-11:54 | | | Contrast of emergent constraint on western North Pacific subtropical high between CMIP5 and CMIP6 X. Chen | | 11:55-12:10 | On the atmospheric background for the occurrence of three heat wave types in East China W. Xie | Diagnostics and real-time subseasonal prediction of heat waves over India R. Mandal | Anthropogenic influence on seasonal extreme temperatures in eastern China at century scale T. Hu | | 12:10-12:25 | Time and period of emergence of compound events in France J. Schmutz | Evaluation of high resolution regional model (COSMO) used in marine weather forecasting over the Nigerian coast- Gulf of Guinea M. Sholademi | Observational Uncertainty is Necessary for Assessing Time-of-Emergence N. Lenssen | | 12:25-12:40 | Statistical modelling of extreme rainfall over Aotearoa
New Zealand S. Rosier | Deep-Learning Weather Prediction: Case Studies and Model Deficiencies J. Wider | Observationally constrained attribution and projection of warming in Canada T. Li | | 12:40-14:00 | Lunch Break and Posters | | | | 14:00-15:40 | S10: Changes in extremes including temperature, hydrologic, and multi-variate compound events Location: Amphitheatre Chair: Q. Sun, X. Zhang, J. Zscheischler | IDAG
Location: <u>Prudhomme</u> | S11: From global change to regional impacts, downscaling and bias correction Location: Der Megreditchian Chair: B. François, S. Thao | |-------------|---|--|---| | 14:00-14:15 | Assessing irreversible increase of hot/dry and hot/wet compound extreme events in a post-net-zero climate MG. Seong | | Bias adjustment of climate models: common pitfalls and a new Python package to address these through model comparison and evaluation J Wessel | | 14:15-14:30 | Future shifts in timing of regional extreme precipitation D. Zhu | | Distribution-based pooling for combination and multi-
model bias correction of climate simulations M. Vrac | | 14:30-14:45 | Compound climate events: can climate simulations be improved by bias correction? G. Jacquemin | | Nearest-Neighbor Gaussian Process to Downscale Solar Forecasting at the Grid-Edge for Increased Situational Awareness R. Moradi | | 14:45-14:48 | Future risk of hyperthermia in French Guiana: assessing extreme values of Heat Index with multi-model analysis L. Bald | | Semi-parametric, multisite precipitation weather generation using GAMLSS J. Wessel | | 14:48-14:51 | Spatial return levels for meteorological variables, in climate change context J. Gomez Garcia | | Ensemble bias correction of climate simulations: preserving internal variability P. Vaittinada Ayar | | 14:51-14:54 | Causes of 2022 Atypical Meiyu in Lower Yangtze River Basin: Subseasonal Perspective and Its Predictions ZQ. Zhang | | Mapping local climate change: a methodology with regional warming levels as key intermediary L. Corre | | 14:55-15:10 | Designing life levels of Extreme Temperature by 2100 O. Barbaux | | Intercomparison of Statistical and Dynamical Downscaling for Reproducing Compound Hot-Dry Events M. Legasa | | 15:10-15:25 | Extreme Temperature Indices Based on Satellite Land
Surface Temperature Data J. Blannin | | Assessment of the performance of convolutional neural network based RCM-emulator in representing daily near-surface temperature over the complex terrain of Subtropical Chile K. Goubanova | | 15:25-15:40 | Increasing overlap of USA - Australia fire seasons poses challenges for firefighting cooperation D. Richardson | | Diving into Deep Learning techniques for multi-site fire danger prediction through a pseudo-reality study O . Mirones | | 15:40-16:20 | Coffee break and Posters | | | | 16:20-18:00 | S10: Changes in extremes including temperature, hydrologic, and multi-variate compound events Location: Amphitheatre Chair: Q. Sun, X. Zhang, J. Zscheischler | D&A Course Location: <u>Prudhomme</u> | S03: Space-time statistical methods for modelling and analyzing climate variability Location: Der Megreditchian Chair: D. Allard, B. Li | | 16:20-16:35 | Scaling of climate extremes after net zero CO2 emissions L. Cassidy | | Surface time series models for large spatio-temporal datasets I. Martinez Hernandez | | 16:35-16:50 | Systematic overview of circulation contributions to observed summer heat trends P. Pfleiderer | | Empirical Orthogonal Functions and their latest developments B. Alglave | | 18:30-21:00 | Guided Tour of Toulouse | | |-------------|--|--| | | | Ğ | | 17:45-18:00 | | Comparison of Spatial Models for Wind Resource in Ireland E. Organ | | 17:30-17:45 | temperature in China from observation to projections H. Cui | spatio-temporal random fields on meshed surfaces defined from advection-diffusion SPDEs L. Clarotto | | 17:15-17:30 | Projections of Diverse ENSO Teleconnections with Extremes in CMIP6 models R. Lieber Dependence of daily precipitation extremes on the | A Bayesian spatio-temporal regression model to derive gridded monthly SPI-1 and SPI-3 maps G. Fioravanti Modeling CO2 concentration in the atmosphere using | | 17:11-17:14 | Analyzing 23 years of warm-season derechos in France: a climatology and investigation of synoptic and environmental changes L. Fery | Data-driven quantification of changing weather and climate risk using large-deviation theory F. Kwasniok | | 17:08-17:11 | Attribution of extremes in the terrestrial carbon cycle I. Dunkl | Down-scaling of open-boundary vector fields using Gaussian Markov random fields M. Gillan | | 17:05-17:08 | Emergence of climate change signals in a CMIP6 multi-
model ensemble of extreme indices N. Schuhen | Basis for Change: Approximate Stationary Models for
Large Spatial Data A. Sikorski | | 16:50-17:05 | Which regions are at risk for breaking precipitation records in the (near) future? I. de Vries | Exploring Climate Extremes: Mode-Based Pattern
Recognition with Koopman Operator Theory M.
Avakumović | | Friday 28 Jun | e 2024 | | | |---------------|--|---|---| | 09:00-10:30 | S11: From global change to regional impacts, downscaling and bias correction (Chair: B. François, S. Thao) S12: Impact attribution: from source to suffering (Chair: G. Hegerl, J. Sillmann, W. Thiery) Location: Amphitheatre | | | | 09:00-09:45 | (S11) Deep Learning for Statistical Downscaling: Recent Advances and Perspectives J. González-Abad | | | | 09:45-10:30 | (S12) Developments and challenges in attributing cl | | | | 10:30-11:00 | Coffee break and Posters | | | | 11:00-11:55 | S12: Impact attribution: from source to suffering Location: Amphitheatre Chair: G. Hegerl, J. Sillmann, W. Thiery | S03: Space-time statistical methods for modelling and analyzing climate variability Location: Prudhomme Chair: D. Allard, B. Li | S11: From global change to regional impacts, downscaling and bias correction Location: Der Megreditchian Chair: B. François, S. Thao | | 11:00-11:15 | Linking rising temperatures and mental health risks in India- Implications for attribution of climate-related impacts M. Zachariah | Trends in surface air temperature and its short-term variability: How are they related? An analysis based on PCA R. Huth | Selection of representative climate simulations by minimizing bias in average monthly temperature and precipitation: near-future climate change in Odesa, Ukraine V. Khokhlov | | 11:15-11:30 | Forecast-based attribution of the mortality impact of the Pacific Northwest heatwave E. Lo | Evaluation of global teleconnections in CMIP6 climate projections using complex networks C. Dalelane | Evolution of high-temperature extremes over the Euro-
Mediterranean region and its impact on aircraft takeoff
performance V. Gallardo | | 11:30-11:45 | Storylines for heat-mortality extremes E. Fischer | Temperature anomalies through NASA's Giovanni platform and their comparison with the temperatures recorded at the main meteorological stations in Nicaragua, period 2016-2020 R. Silva Soza | Detection of Anthropogenic Impacts on Snowpack
Variability in Western US. S. Duan | | 11:45-11:48 | The impact of future sea-ice loss on temperature extremes and human mortality in Canada E. Ball | Classifications of atmospheric circulation patterns: a tool for explaining asymmetry in day-to-day temperature differences R. Huth | | | 11:48-11:51 | ECMWF ensemble model specific humidity skill verification in the region of Vietnam I. Perez | | Future Scenarios Projections of Temperature, Precipitation and Extreme Climate Indexes over Guangx X. Zhou | | 11:51-11:54 | | | | | 11:55-12:40 | S12: Impact attribution: from source to suffering
Location: <u>Amphitheatre</u>
Chair: G. Hegerl, J. Sillmann, W. Thiery | S03: Space-time statistical methods for modelling and analyzing climate variability Location: Prudhomme Chair: D. Allard, B. Li | S08: Attribution and analysis of single weather events Location: Der Megreditchian Chair: E. Fischer, M. Kirchmeier-Young | | 11:55-12:10 | Attributing damage costs to climate change in New Zealand floods S. Dean | Bridging the divide between physical and statistical reasoning in climate variability and change T. Shepherd | Global warming contribution to the long-lived super typhoon Hinnamnor: Role of warm surface water over the East China Sea YH. Kim | | 12:10-12:25 | Extreme heatwaves in Europe 1950-2021: analysis of the links between meteorology, population, and impacts L. Mandonnet | | Contribution of External Forcing and Internal Variability to Recent Extreme Rainfall Trends in the Horn of Africa J. Kitmutai | | 12:25-12:40 | Direct and lagged climate change effects intensified the widespread 2022 European drought E. Bevacqua | Multivariate spatio-temporal stochastic weather generator S. Obakrim | Forensic attribution of the extreme rainfall in Pakistan in 2022 to anthropogenic climate change B. Clarke | |-------------|---|--|--| | 12:40-14:00 | Lunch Break and Posters | | | | 14:00-15:40 | S12: Impact attribution: from source to suffering Location: Amphitheatre Chair: G. Hegerl, J. Sillmann, W. Thiery | S03: Space-time statistical methods for modelling and analyzing climate variability Location: Prudhomme Chair: D. Allard, B. Li | S08: Attribution and analysis of single weather events Location: Der Megreditchian Chair: E. Fischer, M. Kirchmeier-Young | | 14:00-14:15 | Quantifying Individual Contributions to eXtremes (QuICX) F. Lott | HWGEN: An Hourly Wind stochastic GENerator S.Yin | Arctic marine heatwaves forced by greenhouse gases and triggered by abrupt sea-ice melt A. Barkhordarian | | 14:15-14:30 | Impact Attribution - how did climate change affect wheat yields in northern Kazakhstan? P. Romanovska | Spatio-temporal weather generator for the temperature over France C. Cognot | Extreme event attribution of the unprecedented heat event of August 2023 in Barcelona (Spain). Observed and projected intensity and exposure under global warming M. Lemus-Canovas | | 14:30-14:45 | Acceleration of local warming damped in urban areas of the Global South A. Sengupta | On the archetypal `flavours' and indices of ENSO D. Monselesan | A large ensemble illustration of how record-shattering heat records can endure J. Risbey | | 14:45-14:48 | | Quantifying ENSO teleconnections in a variable climate A. King | Multiple attribution analysis for heat wave events in Argentina in the summer of 2022/23 using the analogue technique S. Collazo | | 14:48-14:51 | | | Disentangling the Contribution of Greenhouse Gases and Aerosols to Estimates of Regional Heatwave Return Periods F. Kraulich | | 14:51-14:54 | | | The impact of two different atmospheric circulation patterns in Asia on low temperature events in Yunnan during winter H. Yan | | 14:55-15:10 | Projected shifts and dynamics in blue and green water resources availability S. Heselschwerdt | Regional and seasonal diversity of ENSO-precipitation teleconnections and their asymmetry in CMIP6 models A. Sengupta | The 2021 heatwave was less rare in Western Canada than previously thought E. Malinina | | 15:10-15:25 | Tipping points in hydrology: an inquiry into Sahelian watersheds regime shifts with a dynamical model and past climate simulations E. Le Roux | Pacific climate variability and its regional impacts in warmer, stabilised climates A. Dittus | The unprecedented spatial extent and intensity of the 2021 summer extreme heatwave event over the Western North American regions CT. Chen | | 15:25-15:40 | Children disproportionally exposed to attributable heatwaves at low-latitude low-income countries R. Pietroiusti | Toward improved ocean heat content mapping and uncertainty quantification by modeling vertical spatio-temporal dependence T. Sukianto | Simulating the Western North America heatwave of 2021 with analogue importance sampling P. Yiou | | 15:40-16:20 | Coffee Break and Posters | | | | 16:20-18:00 | S12: Impact attribution: from source to suffering Location: Amphitheatre Chair: G. Hegerl, J. Sillmann, W. Thiery | S03: Space-time statistical methods for modelling and analyzing climate variability Location: Prudhomme Chair: D. Allard, B. Li | S08: Attribution and analysis of single weather events Location: Der Megreditchian Chair: E. Fischer, M. Kirchmeier-Young | | 16:20-16:35 | Assessment of the vulnerability of Senegalese farming households to climate change: integrated assessment approach and mapping of indicators using geographic information systems (GIS). M. Ndimblane | Statistical dependency among persistent events: Jet stream configurations and their impact on the formation of mid-latitude heatwaves R. Donner | Anthropogenic Contribution to the Unprecedented 2022
Mid-Summer Extreme High-Temperature Event in
Southern China X. Guan | | 16:35-16:50 | Aridification and its impacts on terrestrial hydrology and ecosystems over a comprehensive transition zone in China Z. Li | Characterization of hot-dry spatially compound events using probabilistic networks C. Graafland | Relative contributions of anthropogenic forcing and internal variability in southeast Australia's multi-year (2017-2019) drought and future prospects S. Rauniyar | |-------------|--|---|--| | 16:50-17:05 | Navigating Climate Change Health Impacts: Unveiling the Role of Behavioural Communication N. Okoko | On the statistical distribution of temperature and the classification of extreme events considering season and climate change – an application in Switzerland S. Scherrer | Anthropogenic Influence on 2022 Extreme January–
February Precipitation in Southern China Y. Hu | | 17:05-17:08 | | Low-frequency climatic variability and trends in Central Argentina D. Panza | An attribution atlas for Aotearoa New Zealand D. Stone | | 17:08-17:11 | | Analyzing Climate Trends in Southern Africa: A Comparative Study of Observed and Modeled Data on Regional Warming I. Pinto | | | 17:11-17:14 | | Unveiling seasonal synoptic-scale links: A global evaluation of atmospheric circulation and climate connections J. Stryhal | | | 17:15-17:30 | | Variation of dry spell over Makurdi, Benue State, Nigeria P. Iheme | | | 17:30-17:45 | | A detailed stationarity analysis and trend modelling of French daily precipitations E. Paquet | | | 17:45-18:00 | | Wet season onset and termination in south-western Cape, South Africa N. Ndebele | |