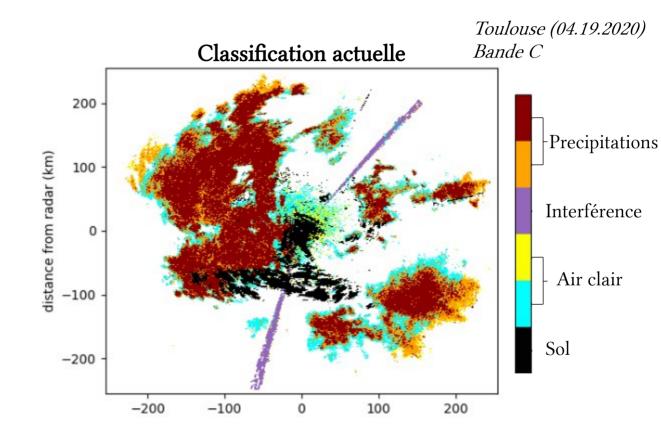


Les images radar (PPI)

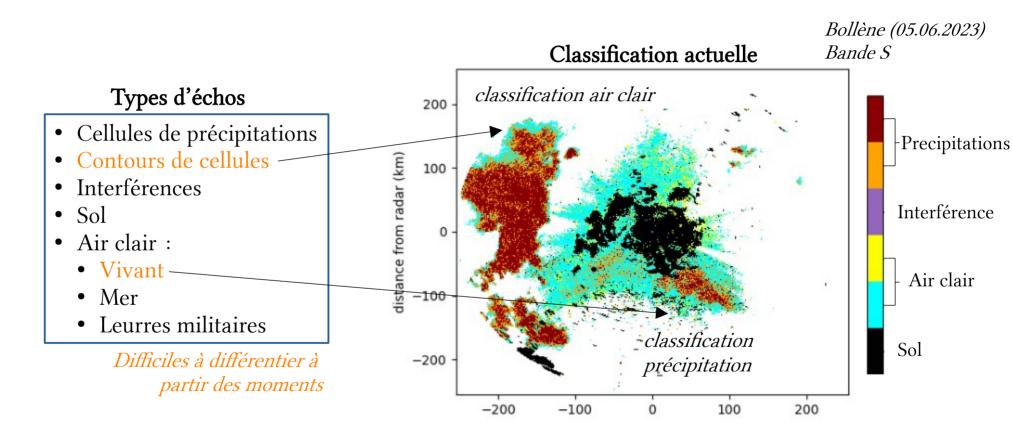
Types d'échos

- Cellules de précipitations
- Contours de cellules
- Interférences
- Sol
- Air clair:
 - Vivant
 - Mer
 - Leurres militaires

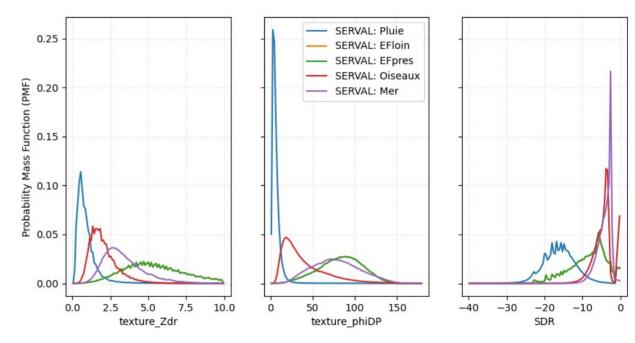

Les images radar (PPI)

Types d'échos

- Cellules de précipitations
- Contours de cellules
- Interférences
- Sol
- Air clair:
 - Vivant
 - Mer
 - Leurres militaires


Difficiles à différentier à partir des moments

Les images radar (PPI)


La classification bayésienne actuelle

Méthode actuelle : « au pixel »

Seuils + Méthode de segmentation supervisée bayésienne :

- Lois de probabilité construites à partir des valeurs des pixels de la base d'apprentissage : radars bande C
- Application du type de probabilité maximale pour chaque pixels de l'image radar

Lois de probabilité (ou densités de probabilité) sur trois moments radars pour les types : EF (écho fixe) loin et proche, pluie, oiseaux et mer

06/02/2024

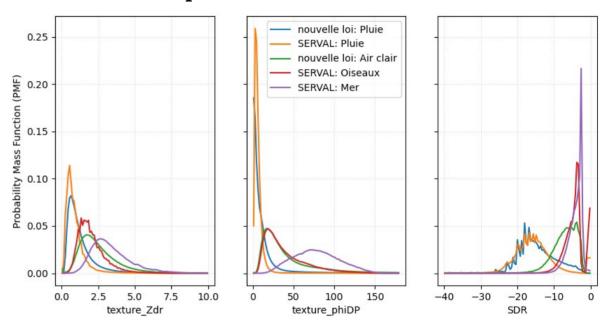
Les différents niveaux de solutions

Actualisation de la méthode « au pixel »

- Bayésienne : entrainement de lois de probabilités adaptées aux radars de bande S
- Forêt d'arbres de décision : entrainement d'une nouvelle méthode permettant de différentier d'avantage de situations

Implémentation d'une méthode spatialisée (en cours)

- Méthode de segmentation au pixel + méthode de spatialisation par groupes de pixels
 - => spatialisation « à la main »
- Réseaux de neurones convolutionnels
 - => spatialisation par la méthode convolutionnelle


Actualisation de la méthode au pixel

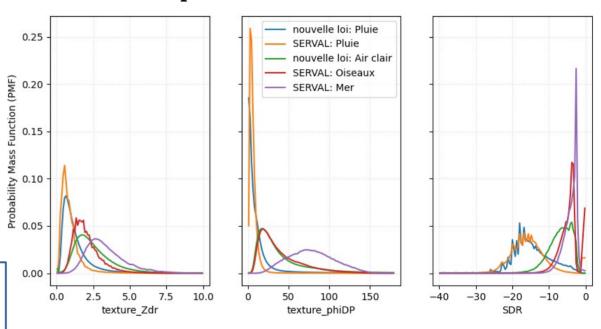
Création d'un jeu de données sur le radar de Nimes

- Labélisation de 200 images du radar de Nimes contenant tous types de situations (1ère élévation)
- Extraction des valeurs de chaque pixel (~10 milions de pixels typés precipitation et 12 milions typés air clair)

Génération de nouvelles lois pour les mêmes moments

Lois de probabilité (ou densités de probabilité) sur trois moments radars pour les types : pluie et air clair

Actualisation de la méthode au pixel


Création d'un jeu de données sur le radar de Nimes

- Labélisation de 200 images du radar de Nimes contenant tous types de situations (1ère élévation)
- Extraction des valeurs de chaque pixel (~10 milions de pixels typés precipitation et 12 milions typés air clair)

Evaluation sur jeu de test

Même potentiel de différentiation de la pluie et de l'air que les lois actuelles (environ 78 % de bonne classification)

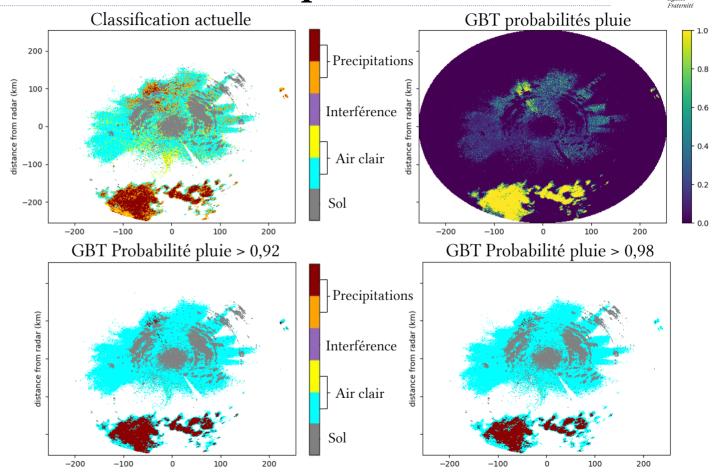
Génération de nouvelles lois pour les mêmes moments

Lois de probabilité (ou densités de probabilité) sur trois moments radars pour les types : pluie et air clair

06/02/2024 8

Actualisation de la méthode au pixel

RÉPUBLIQUE FRANÇAISE Liberté

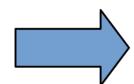

Entrainement d'un gradient boosted tree (GBT) sur les mêmes données

Evaluation sur jeu de test

Amélioration de la segmentation à partir des mêmes moments (environ 87 % de bonne classification)

Bilan de l'expérience

Les grandeurs sélectionnées ne sont pas suffisantes : il serait intéressant d'ajouter des info de spatialisation


Implémentation d'une méthode spatialisée

10

Création d'un jeu de données sur les radars de Metropole

- Sélection de 18 radars représentatifs des bandes de fréquences, générations technologiques et positionnement géographique
- Extraction de 3 dates par jour de l'année autour du lever, midi et coucher de soleil
- Pré-filtrage des situations avec peu de données
- Ajout de données tierces pour la labellisation : pluviomètres et hydre

Spatialisation « à la main »

- Entrainement d'un gradient boosted tree et optimisation des grandeurs utilisées pour le typage « au pixel »
- Spatialisation des precipitations par accrétion des pixels et seuils de taille de structure + ajout de contours

Spatialisation convolutionnelle

- Entrainement d'un Unet pour la détection des précipitations
- Stage : Louis Lutun (début 12 février)

06/02/2024

Merci de votre attention

Contact: thibault.desert@meteo.fr