

On the proper use of temperature measurements in weather forecasting models over mountains

Danaé Préaux

danae.preaux@meteo.fr

Thesis supervisors

Ingrid Etchevers, Isabelle Gouttevin

Introduction: Arome's temperature bias in the mountains

Warm bias in valleys during anticyclonic situations (*Paci et al.,2015*)

- ✤ Warm bias in valleys during snow events
- * Cold bias in high altitude

Arome's domaine and Alps stations

Introduction: Arome's temperature bias in the mountains

- Warm bias in valleys during anticyclonic situations (*Paci et al.,2015*)
- Warm bias in valleys during snow events (forecasters)

Road traffic

* Cold bias in high altitude

Arome's domaine and Alps stations

Introduction: Arome's temperature bias in the mountains

- Warm bias in valleys during anticyclonic situations (Parci et al., 2015)
- Warm bias in valleys during snow events (forecasters)
- Cold bias in high altitude (Vionnet et al., 2016; Dombrowski-Etchevers et al., 2017; Monteiro et al., 2022)

Snowpack and Climate

Arome's domaine and Alps stations

Introduction: observational data

Spatial heterogeneity: valley vs high mountain

Stations

Altitude (z)	Standard	Nivôse			
500m ≤ z < 1500m	27	1			
1500m ≤ z < 2500m	6	7			
z ≥ 2500m	0	6			

-141 223 587 951 1315 1679 2043 2407 2771 3135 3499 3863 4318 Alps stations and Arome relief

- \diamond Col de Porte (CDP) Col du Lac Blanc (CLB) Standard stations
- X Nivôses stations

Introduction: Nivôse stations

Heterogeneity in height of the sensor over ground surface

Winter

Nivôse stations are part network of а of automatic weather stations in the high mountains, created by Météo-France.

Sponde Nivôse, Albertacce (Corsica) (left and right photos)

Introduction: use of Nivôse stations

Is T5m equivalent to T2m?

Cycle diurne du biais de température (en K) pour la tranche d'altitude supérieure à 2 500 m pour quatre mois de la période 2012-2014 : janvier, avril, août et novembre (Dombrowski-Etchevers et al., 2017).

Hypothesis

The temperature measured at the Nivôse stations is equivalent to a temperature at 2m

Diurnal cycle at CDP and CLB

An average difference between 2 and 5 m of 0.3° C (Col de Porte, CDP) and 0.4°C (Col du Lac Blanc, CLB)

Diurnal cycle at CDP and CLB

- An average difference between 2 and 5 m of 0.3°C (Col de Porte, CDP) and 0.4°C (Col du Lac Blanc, CLB)
- This difference is **less than the measurement uncertainty** (< 0.5°C) ⇒ very shallow temperature inversions

Diurnal cycle at CDP and CLB

- An average difference between 2 and 5 m of 0.3°C (CDP) and 0.4°C (CLB)
- This difference is less than the measurement uncertainty (< 0.5°C) ⇒ very shallow temperature inversions
- BUT a significant difference at night

Anticyclonic situation

Col du Lac Blanc (snow research center): Mast measuring temperature at different heights

T2m vs T5m: Arome model

Diurnal cycle at CDP and CLB

- → An average difference between 2 and 5 m of 0.7°C (CDP) and 4.3°C (CLB)
- → This difference is significant
- → Poor representation of the boundary layer

T2m vs T5m: obs versus model

What consequences ?

- → Correct T5m
- → Biased T2m, especially in high-altitude
- → Incorrect modelling of thermal amplitude

T2m vs T5m: obs versus model

What consequences ?

Most of the T2m bias is caused by a Tsurface bias

T2m vs T5m: obs versus model

What consequences ?

- Most of the T2m bias is caused by a Tsurface bias
- Opposite sign biases
 according to altitude ⇒
 error compensation if all
 altitudes are averaged
- sensor height error > (altitude of the station - the model relief) error

Impact on scores

Revising the scores in mountain regions

	Biais
Old method	- 3.6
Revised method	- 0.7

<u>Old Method:</u> T2m forecasts are compared with all stations where the difference between the actual altitude and the model altitude is less than 150 m (Vionnet et al., 2016; Dombrowski-Etchevers et al., 2017)

Impact on scores

Revising the scores in mountain regions

	Biais
Old method	- 3.6
Revised method	- 0.7

<u>Old Method:</u> T2m forecasts are compared with all stations where the difference between the actual altitude and the model altitude is less than 150 m (Vionnet et al., 2016; Dombrowski-Etchevers et al., 2017)

- → Finally, the winter bias at Nivôse stations is correct
- → Failure to take account of daytime heating

Conclusion

Summary

- Cold biais: -3.6 vs -0.7°C in winter above 2500m => importance of using the correct height above ground !
- The Nivôses stations can be used to assess the first level of the model
- Incorrect modelling of thermal amplitude and boundary layer

Recommendations

- Take account of sensor height in scores and assimilation (*Préaux et al., in GMDD*)
- Take into account altitude bands when calculating scores: differentiate between plains, valleys, mid-altitudes and high-altitudes
- Beware of the standard gradient. Prefer a local gradient (Sheridan et al., 2018)

Conclusion

Work in progress

- Improve the T2m diagnostic OR use 120 levels (instead of 90) closer the surface ⇒ better Ts and T2m becomes almost a prognostic variable
- * Change the surface scheme including the snow scheme for ISBA-DIFF and ISBA-ES
- The Austrian index IFAC refined description of topographic features ⇒ test and evaluate its relevance for calculating scores

BIAS

	T5m	T2m	Ts
Col de Porte	-0.0°C	-0.6°C	+3.3°C
Col du Lac Blanc	+0.5°C	-3.4°C	-6.2°C

Thermal amplitude

	T5m		Т2	2m	Ts		
	OBS	OPER	OBS	OPER	OBS	OPER	
Col de Porte	2.9	2.2	3.6	3.3	3.8	5.3	
Col du Lac Blanc	1.1	0.4	1.4	3.7	4.5	8.4	

	500m - 1500m			1500m - 2500m				> 2500m		
	T2m		T5m		T2m		T5m		T5m	
	Biais	STDE	Biais	STDE	Biais	STDE	Biais	STDE	Biais	STDE
Old method	0.2	2.3			-2.1	3.6			-3.6	5.0
Revised method	0.3	2.3	-0.5	1.8	-0.9	2.6	-0.5	1.8	-0.7	2.0

<u>Old Method:</u> T2m forecasts are compared with all stations where the difference between the actual altitude and the model altitude is less than 150 m (Vionnet et al., 2016; Dombrowski-Etchevers et al., 2017)