

Un nouvel algorithme de détection de la grêle sévère à partir de réseaux de neurones convolutifs appliqués à des observations radar à double-polarisation

C. Augros, V. Forcadell, M. Ouradou, O. Caumont, P. Lepetit, C. David

Journées de l'IA à Météo France 13-14 février 2025

Contexte risque grêle en France

- Responsable de dommages importants en France aux cultures et infrastructures
 - 5,2 milliards d'euros de dommages liés à la grêle en 2022, France Assureurs
- Forte demande des assureurs et prévisionnistes pour mieux caractériser le risque de grêle en France
 - o différencier grêlons > 2 cm, 5 cm et plus

20/06/2024 Dijon © Radio France - Eddy Cohen

23/10/2022 Amiens @huminfo youtube

État de l'art de la détection de grêle

Détection à partir d'observations radar :

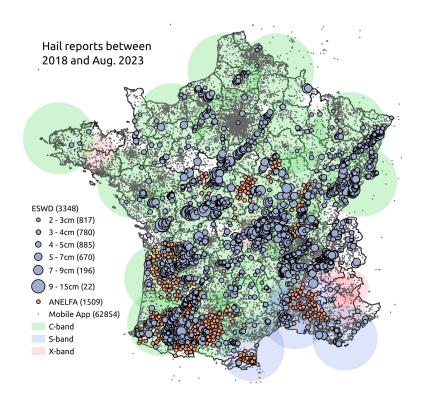
- À partir de profils de réflectivité radar (Zh) et iso 0°C / iso -20°C : MESH
 (Maximum Estimated Size of Hail), POH (Probability of Hail) ⇒ HYDRE
- Algorithmes polarimétriques (Zh, Zdr, phv, Kdp par ex. logique floue Al-Sakka 2013 ⇒ HYDRE)
- Limites de ces algorithmes :
 - fausses alarmes
 - ne prennent pas en compte la structure spatiale des orages
- Essor des applications de l'intelligence artificielle appliquées au domaine météorologique + réseaux de neurones convolutifs bien adaptés aux images radar

Objectifs

Introduction

- Mettre en œuvre et évaluer une méthode de détection de la grêle sévère qui s'appuie sur des réseaux de neurones convolutifs pour prendre en compte la structure spatiale des orages
- Adapter la méthode à la détection de la taille des grêlons

Thèse CIFRE Vincent Forcadell 2021-2024



Stage IENM3 Maxandre Ouradou 2024

Plan

- Données
- Méthode
- Détection de l'occurrence de grêle sévère
- Détection de la taille de grêle
- Conclusion et perspectives

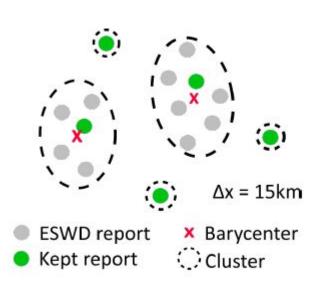
Rapports de grêle 2018 - 2023

Introduction

ESWD : grêle ≥ 2 cm (European Severe Weather Database)

3348

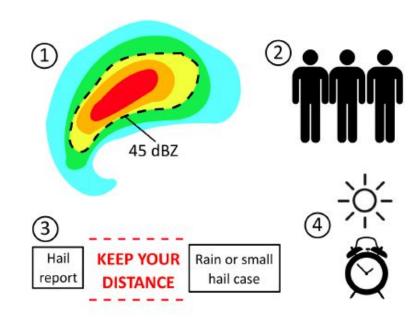
ANELFA (grêlimètres) 1509

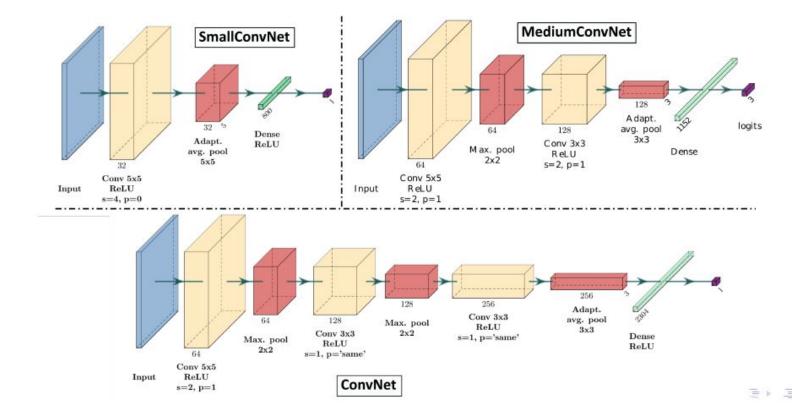

Appli Météo-France

62854

Construction de la base de données

Grêle sévère (≥ 2 cm)


- 1. Ajustement de l'heure du rapport
- Clustering DBSCAN (évite de sur-représenter les orages avec le plus de rapports)


Construction de la base de données

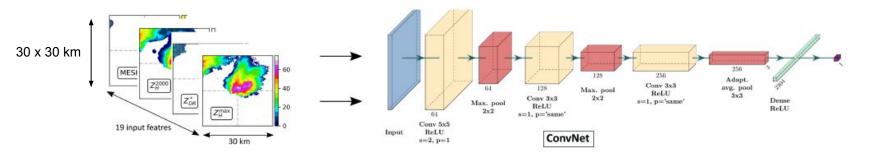
Pluie ou petits grêlons

- Recherche "d'objets orage" (Zh > 45 dBZ)
- Dans les zones de densité de population >= 100 hab/km2
- 3. Loin de tous les rapports de grêle disponibles (60 km)
- 4. Seulement la journée (7h à 22h loc)

Architectures CNN testées

Données en entrée du CNN

Pour chaque cas de : (grêle ≥ 2 cm) ou (pluie ou petits grêlons)


- Volumetric data Z_H^{max} , Z_{DR}^* 2 3D Cartesian grid K_{DP}^* , ρ_{HV}^*

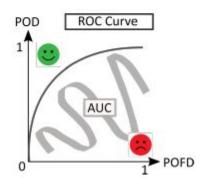
CAPPI	Z_{H}^{2000} , Z_{DR}^{2000} , K_{DP}^{2000} , $ ho_{HV}^{2000}$ Z_{H}^{above} , Z_{DR}^{above} , K_{DP}^{above} , $ ho_{HV}^{above}$
Storm proxy	Z _{DR} column, VIL, ET45
Hail proxy	POH, MESH, A13

≡ collocated values with Z_H^{max} over the column

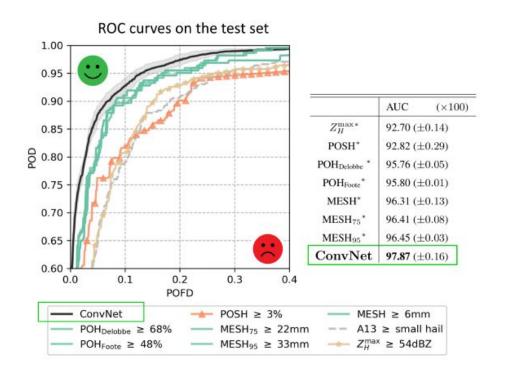
Introduction

3D Cartesian grid from the interpolation of the two nearest radars (Helmus and Collis 2016)

Scores d'évaluation des performances


Contingency table

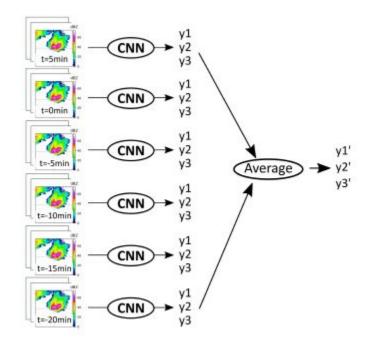
		Prediction		
		severe hail	rain of small hail	
Observation	severe hail	True Positive (TP)	False Negative (FN)	
	rain or small hail	False Positive (FP)	True Negative (TN)	


$$POD = recall = \frac{TP}{TP + FN}$$
 (3)

$$POFD = \frac{FP}{TN + FP}$$
 (4)

F1 score =
$$\frac{2 \times TP}{2 \times TP + FP + FN}$$
 (5)

Performance de ConvNet / algorithmes existants

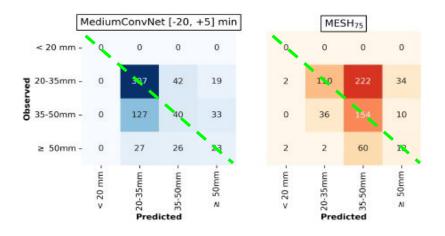


Introduction

	Train	Val	Test
Severe hail	1476	413	446
Rain / small hail	3100	1138	950
Total	4576	1551	1396

 ConvNet obtient de meilleurs scores que les algorithmes classiques (Forcadell et al, 2024)

Ajout d'une dimension temporelle



- Pourquoi ?
 - Certaines signatures radar sont visibles avant l'occurrence de grêle au sol
 - Technique d'augmentation de données
- 21 prédicteurs, 6 pas de temps et 3 classes de taille par image

	Train	Val	Test	Total
Medium (20-35 mm)	892	386	368	1646
Large (35-50 mm)	754	202	200	1156
Giant (≥ 50 mm)	394	110	76	580
Total	2040	698	644	

Introduction Données Méthode Détection grêle sévère Taille de grêle Conclusions

MediumConvNet VS MESH

Model	F1 score
MediumConvNet	0.477
MESH ₇₅	0.273
MESH	0.214
MESH ₉₅	0.158
A13	0.109

- MediumConvNet appliqué à des images de 30 x 30 km, sur 25 minutes (6 pas de temps)
- Meilleure performance que MESH en moyenne sur les 3 classes, mais variations selon la classe de taille

Conclusions

- Implémentation d'algorithmes de détection de l'occurrence de grêle sévère et de la taille des grêlons avec des CNN pouvant s'appliquer à des "objets" orage
- Performances meilleures que celles des algorithmes classiques
- Amélioration si prise en compte de la dimension temporelle
- Prédicteurs les plus utiles : EchoTop45, Zhmax et variables polarimétriques (phv et Zdr)

Perspectives

- Ajout des cas d'orages 2024 et application aux "objets" orage de DIROP/PI (OPICs radar)
 - ⇒ stage 2025 Louis Tariot
- Extension de la base de données et de l'évaluation à d'autres régions couvertes par le même type de radars :
 - ⇒ Argentine : visite scientifique Hernan Bechis 2025-2026 ?
 - ⇒ Allemagne : collaboration avec DWD et université Freiburg ?