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Climate models

e Numerical representation of the climate system
o  5components plus interactions
o  External forcings (anthropogenic & natural)

Natural

. . . forcings:
e Climate simulations: Sun, CLIMATE'SYSTEM
o  Time evolution of diagnostic variables Volcanoes, =
Earth orbit . Atm %

(Temperature, Humidity, ...)

e Long & multiple simulations :
o toreach system equilibrium
o  tostudy thereaction of the system to different
scenario of external forcings
o totakeinto account the uncertainty range

e Expensive tools : compromise between
complexity, resolution, and the length or the
number of simulations




Regional Climate Models

Global Climate Models (GCM):

e Driven by human activities scenarios

e Generally high complexity :
Coupled model with various components
Atmosphere, ocean, sea-ice, surface, vegetation, rivers...

e Horizontal resolution ~ 50km to 200km

= Possible to run long and large ensemble of
simulations, but too coarse to study the local impacts of
climate change.
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Regional Climate Models

Global Climate Models (GCM):

e Driven by human activities scenarios

e Generally high complexity :
Coupled model with various components
Atmosphere, ocean, sea-ice, surface, vegetation, rivers...

e Horizontal resolution ~ 50km to 200km

= Possible to run long and large ensemble of simulations,
but too coarse resolution to study the local impacts of
climate change.

Regional Climate Models (RCM):

e Limited Area models — driven by a GCM at the
border of the domain
e Horizontal resolution 50km to 1km

e Simpler model: generally only the atmosphere L —
Source : 'Encyclopédig de I'environnement -

P. Nabat et A. Valdoire

= Better representation of the local/extremes events, but
too expensive to cover the range of uncertainties



Regional Climate Models

Global Climate Models (GCM):

e Driven by human activities scenarios

e Generally high complexity :
Coupled model with various components

Atmosphere, ocean, sea-ice, surface, vegetation, rivers...

e Horizontal resolution ~ 50km to 200km

= Possible to run long and large ensemble of simulations,
but too coarse resolution to study the local impacts of

climate change.
Regional Climate Models (RCM):

e Limited Area models — driven by a GCM at the

border of the domain
e Horizontal resolution 50km to 1km

e Simpler model: generally only the atmosphere

= Better representation of the local/extremes events, but

too expensive to cover the range of uncertainties
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RCM-Emulators

Use RCM simulations to train a machine learning algorithm to capture the relationship between
low resolution variables (INPUTS) and high resolution variables of interest (OUTPUT).

Interest : Once the relationship is captured, it can be applied to any new GCM at low cost.

e Build large ensembles by downscaling various GCMs, and multiple members.
e Similar approach tan Empirical/Statistical Downscaling (learns the same relationship in
observational data)
o Advantages: No need for observations: more regions of the world, more variables,
explore future climate.
o Disadvantages : learns an imperfect relationship (learns the defaults of the RCM)



Training : Perfect model strategy

= The relationship is learned INSIDE the RCM simulations used for training

RCM SIMULATION
INPUTS OUTPUTS
Daily description of high resolution
the atmospheric (surface) daily
circulation. variables

\

Neural Network



Training : Perfect model strategy

=> The relationship is learned INSIDE the RCM simulations used for training

RCM SIMULATION

OUTPUTS

high resolution

INPUTS
Daily description of
the atmospheric (surface) daily
circulation. variables

N/

Neural Network

RCM = LARGE SCALE modification + Downscaling

Ensure a PERFECT relationship between
inputs and outputs.

RCM, forced only at the boundaries,
modifies the large scale of its driving GCM:

- Daytoday chronology,
- Butalso at the climatological scale

= We do not learn this LS modification..
— Probably and partially for bad reasons
— GCM-dependent.

...and focus only on the downscaling
function included in the RCM.



Training : Perfect model strategy

= The relationship is learned INSIDE the RCM simulations used for training

RCM SIMULATIONS
ALADING63, historical + RCP85 (1950-2100),
CNRM-CM5+MPI-ESM-LR

INPUTS OUTPUTS
Daily description of high resolution
the atmospheric (surface) daily
circulation. variables

\leural Networ/

UNET based



Emulator conception

RCM: ALADIN63 (12km, driven by CMIP5 runs)

Target variables : Daily Temperature & Precipitations

Temperature, Doury et al. 2023

= 2 w woow

Precipitation, Doury et al. 2024

mm/day




Emulator conception

RCM: ALADIN63 (12km, driven by CMIP5 runs)

e Target variables: Daily Temperature & Precipitations

e Inputs: Daily description of the atmospheric conditions
> Geopotential, temperature, wind components, humidity at 3
vertical levels + external forcing (aerosols, Greenhouse gases)
> 2stepsstandardization : Temporal and spatial information given
separately

Ge°|5°ﬁel:‘ttia| Temperature Humidity Eastward wind Northward wind
eig

M: [0.5], SD: [0.5] M:[-0.], SD: [0.2] M:[-0.3], SD: [0.3] M:[1.2], SD: [1.1]

Each map
has mean 0
and
variance 1




Emulator conception

RCM: ALADING63 (12km, driven by CMIP5 runs)

e Target variables: Daily Temperature & Precipitations

e Inputs: Daily description of the atmospheric conditions
> Geopotential, temperature, wind components, humidity at 3
vertical levels + external forcing (aerosols, Greenhouse gases)
> 2stepsstandardization : Temporal and spatial information given
separately

e Neural network architecture : UNet based
> Efficient management of multidimensional data
> Fully convolutional : helps the network to better capture the
spatial relationship (Gonzalez-Abbad et al. 2023)

U N ET (Ronnenberg et al. 2015)
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Emulator conception

RCM: ALADING63 (12km, driven by CMIP5 runs)

Target variables : Daily Temperature & Precipitations

Inputs : Daily description of the atmospheric conditions
> Geopotential, temperature, wind components, humidity at 3
vertical levels + external forcing (aerosols, Greenhouse gases)
> 2stepsstandardization : Temporal and spatial information given
separately

Neural network architecture : UNet based
> Efficient management of multidimensional data
> Fully convolutional : helps the network to better capture the
spatial relationship (Gonzalez-Abbad et al. 2023)

Loss function designed for precipitation

Penalizes stronger an underestimated heavy precipitation

The parameter is the quantile value for the precipitation at a given
day/point, following a Gamma distribution fitted at the grid point.
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Normally
distributed
= MSE is well
adapted

Right skewed
= Asymmetric loss
function, to
specifically focuses
on extremes

L(y,§) = [y = g1 + (8 + maz(0,y - 9))




How to apply the emulator?

GCM SIMULATION
Follows the large
scale of the GCM

INPUTS P> Neural Network P Predicted output

ONLY THE RCM
DOWNSCALING
FUNCTION




Short Evaluation



Evaluation: Application to low-res reanalysis

High resolution RCM

ONLY THE RCM outputs driven by

ERA-Interim DOWNSCALING ERA-Interim
FUNCTION I
INPUTS P> Neural Network P Predicted output

!

High resolution
observation (or
reanalysis)

CERRA



The case of precipitations

Precipitation mm/day

1 year, single point South France
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The case of precipitations

1 year, single point South France Daily correlation
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= The emulator follows better the
observational (CERRA) time series
at the daily and grid point scale but
also for the interannual variability,
than the RCM.
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Ap_plication:
Let's downscale somthing big



Application: let's downscale something big,.

CNRM-CM6, 150 km.
e historical: 1950-2014, 22 members

e Projections:2015-2100
o 4 scenarios

SSP1-2.6, 5SP2:4'5, SSP3-7.0,
SSP5-8.5

o 6 memberseach

e Projections sort-term: 2015-2039
o 4 scenarios SSP1-2.6,S55P2-4.5,
SSP3-7.0,S5P5-8.5

o 24 members each
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Case study : Pyrenees-Orientales drought 2022-23

= Yearly cumulated precipitation over the P-O territory,
normalised (normally distributed so wrt mean and standard deviation)

Pyrenees-Orientales yearly rainfall anomalies

Normalized anomalies
o

1960 1970 1980 1990 2000 2010 2020
YEAR



Case study : Pyrenees-Orientales drought 2022-23

= Yearly cumulated precipitation over the P-O territory,
normalised (normally distributed so wrt mean and standard deviation)

Pyrenees-Orientales yearly rainfall anomalies

Anomaly
ref:
-1.6

Normalized anomalies
o
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Case study : Pyrenees-Orientales drought 2022-23

= Yearly cumulated precipitation over the P-O territory,
normalised (normally distributed so wrt mean and standard deviation)

Pyrenees-Orientales yearly rainfall anomalies
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™ i ref :
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Case study : Pyrenees-Orientales drought 2022-23

= Yearly cumulated precipitation over the P-O territory,

normalised (normally distributed so wrt mean and standard deviation)

Proportion of anomalies
1yr < ref (anomaly 1.6):

2 yr consecutive < ref (anomaly 1.6):

historical (1960-80):4%

historical (1960-80): 0

Normalized anomalies

Pyrenees-Orientales yearly rainfall anomalies
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Case study : Pyrenees-Orientales drought 2022-23

Proportion of anomalies
1yr < ref (anomaly 1.6):

e historical (1960-80):4%
2020-2024 :4%
2035-2039: 6%

2 yr consecutive < ref (anomaly 1.6):

historical (1960-80): 0
2020-2024:1%(11)
2035-2039:2%

Pyrenees-Oriental

620yrs

yearly rainfall anomalies
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Case study : Pyrenees-Orientales drought 2022-23

Proportion of anomalies
1yr < ref (anomaly 1.6):

2 yr consecutive < ref (anomaly 1.6):

historical (1960-80):4%
2020-2024 : 4%
2035-2039: 6%
2095-2099 :28%

historical (1960-80): 0
2020-2024:1% (11)
2035-2039:2%
2095-2099 :20%

3yrs= 10%

Pyrenees-Oriental

620yrs

96 yrs

yearly rainfall anomalies

Normalized anomalies
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Conclusion

We trained an RCM-emulator for precipitation on existing RCM simulations.

We set a training strategy that forces the emulator to follow the GCM large scale.
We validated the emulator by downscaling low resolution reanalysis.

The emulator shows better consistency with the observations chronology.

We downscaled a big ensemble from CNRM-CMé6 (120 members for near future period)

The very large ensemble allows us to study the local climate change, for example over the
Pyrénées-Orientales, and severe drought.

We find that drought as 2022-2023 seemed not really possible before, rare today, but maybe
common in a far future.

We also see a trend in the future with less precipitation and “very wet years”, and less
variance.



But some limitations maybe..

mm/year

4000 A

3500

3000 -

2500 -

2000 -

1500 +

1000 A

500

Yearly cumulated precipitation, in P-O

1950 1960 1970 1980 1990 2000 2010 2020
year




