

Pressure effects on spectral shapes and precise atmospheric remote sensing

Ha Tran

Laboratoire de Météorologie Dynamique, CNRS, Paris htran@lmd.ipsl.fr

- Introduction
- Isolated line shapes
- Line-mixing effects
- Pressure dependence of the measured line intensity
- Conclusions

Line shape modeling

- Greenhouse gases remote sensing requires absorption cross-section modeling with unprecedented high accuracy
- Line intensity and shape parameters must be determined with accuracy better than a few per mill

The optical thickness and the spectral profile

The optical thickness along the line of sight:

$$\tau_{\sigma}(z) = \sum_{i} \sum_{j} \int_{0}^{z} S_{\sigma_{j}}^{N_{i}}(T(z)) \phi_{LS}(\sigma - \sigma_{j}, P(z), T(z)) N_{i}(z) dz$$

In this equation:

- *i* is the index for various absorbing species
- j is the index for the lines of species i
- $N_i(z)$ is the number density of species i
- **S**(**T**) is the integrated line intensity

The spectral density or the line shape of transition \emptyset_{LS} is given by

 $\Phi(t)$ is the dipole autocorrelation function

The optical thickness and the spectral profile

 $\Phi(t)$ is given by the integral over all velocities of the autocorrelation function $\Phi(\vec{v},t)$ of the dipole moment of molecules having velocity \vec{v} :

$$\Phi(t) = \int d\Phi(\vec{v}, t) \, d\vec{v}$$

with $\phi(\vec{v}, 0) = f_{MB}(\vec{v})$

$$\frac{\partial \phi(\vec{v},t)}{\partial t} = -\int f(\vec{v}',\vec{v})\phi(\vec{v},t)d\vec{v}' + \int f(\vec{v},\vec{v}')\phi(\vec{v}',t)d\vec{v}' + \left(i\omega_0 + i\vec{k}\vec{v} - \Gamma(v) + i\Delta(v)\right)\phi(\vec{v},t)$$

 $\Phi(t)$ is given by the integral over all velocities of the autocorrelation function $\Phi(\vec{v},t)$ of the dipole moment of molecules having velocity \vec{v} :

$$\Phi(t) = \int d\Phi(\vec{v}, t) \, d\vec{v}$$

with $\phi(\vec{v}, 0) = f_{MB}(\vec{v})$

$$\frac{\partial \phi(\vec{v},t)}{\partial t} = -\int f(\vec{v}',t)d\vec{v}' + \int f(\vec$$

 $\Phi(t)$ is given by the integral over all velocities of the autocorrelation function $\Phi(\vec{v},t)$ of the dipole moment of molecules having velocity \vec{v} :

$$\Phi(t) = \int d\Phi(\vec{v}, t) \, d\vec{v}$$

with $\phi(\vec{v}, 0) = f_{MB}(\vec{v})$

$$\frac{\partial \phi(\vec{v},t)}{\partial t} = -\int f(\vec{v}',t)d\vec{v}' + \int f(\vec{v}',t)d\vec{v}' + \int f(\vec{v}',t)d\vec{v}'$$
Voigt profile
$$+ \left(i\omega_0 + i\vec{k}\vec{v} - \Gamma(\mathbf{v}) + i\Delta(\mathbf{v})\right)\phi(\vec{v},t)$$

 $\Phi(t)$ is given by the integral over all velocities of the autocorrelation function $\Phi(\vec{v},t)$ of the dipole

moment of

$$I_V(\omega) = \int_{-\infty}^{+\infty} I_D(\omega' - \omega_0) I_L(\omega - \omega', \Gamma, \Delta) d\omega'$$

$$\vec{v}' + \int f(\vec{v}, t) d\vec{v}'$$
Voigt profile
$$+ i\Delta(\mathbf{x}) \phi(\vec{v}, t)$$

Comparaison between the Doppler, Lorentz and Voigt profiles.

 $\Phi(t)$ is given by the integral over all velocities of the autocorrelation function $\Phi(\vec{v},t)$ of the dipole moment of molecules having velocity \vec{v} :

$$\Phi(t) = \int d\Phi(\vec{v}, t) \, d\vec{v}$$

with $\phi(\vec{v}, 0) = f_{MB}(\vec{v})$

$$\frac{\partial \phi(\vec{v},t)}{\partial t} = -\int f(\vec{v}',t) d\vec{v}' + \int f(\vec{v}',t) d\vec{v}' + \int f(\vec{v}',t) d\vec{v}'$$

$$+ \left(i\omega_0 + i\vec{k}\vec{v} - \Gamma(v) + i\Delta(v)\right)\phi(\vec{v},t)$$
Speed dependent Voigt profile

 $\Phi(t)$ is given by the integral over all velocities of the autocorrelation function $\Phi(\vec{v},t)$ of the dipole moment of molecules having velocity \vec{v} :

$$\Phi(t) = \int d\Phi(\vec{v}, t) \, d\vec{v}$$

with $\phi(\vec{v}, 0) = f_{MB}(\vec{v})$

$$f(\vec{v}',\vec{v}) = \nu_{VC} f_{MB}(\vec{v}')$$

$$\frac{\partial \phi(\vec{v},t)}{\partial t} = -\int f(\vec{v}',\vec{v})\phi(\vec{v},t)d\vec{v}' + \int f(\vec{v},\vec{v}')\phi(\vec{v}',t)d\vec{v}'$$

$$+ \left(i\omega_0 + i\vec{k}\vec{v} - \Gamma(v) + i\Delta(v)\right)\phi(\vec{v},t)$$
Speed dependent hard collision model

HT profile: Speed dependent hard collision model + correlation between velocity- and internal-state-changing collisions

- It can accurately represent isolated line shapes of various systems in atmospheric conditions with an accuracy of 0.1%
- HT profile can be expressed as a combination of Voigt profiles \Rightarrow comparable computational times
- Equivalent to simplified profiles in different limits \Rightarrow it can be used with existing data obtained from simplified profiles
- First-order line-mixing can be easily included

Current accurate spectroscopic measurements exclusively use this profile

Systems: CO₂, CH₄, O₂, CO, NO₂, N₂O, HCl,... and H₂O

Corresponding data included in databases, transfer radiative codes

HT profile: Speed dependent hard collision model + correlation between velocity- and internal-state-changing collisions

- HT profile can be expressed as a combination

Equivalent to simplified profiles in its different

- It is capable to represent isolated line shapes

- First-order line-mixing can be easily included

Current accurate spec ^श

Residus (100x)

Atelier TR

Systems: CO₂, CH₄, O₂, CO, NO₂, N₂O, HCl,... an

Corresponding data included in databases, transfer radiative codes

Spectroscopy for MERLIN: 0.2% accuracy required!

HT profile: Speed dependent hard collision model + correlation between velocity- and internal-state-changing collisions

- HT profile can be expressed as a combination of ...

- Equivalent to simplified profiles in its differe

- It is capable to represent isolated line shape

- First-order line-mixing can be easily included €

Current accurate spig

Systems: CO₂, CH₄, O₂, CO, NO₂, N₂O, HCl,... a

Corresponding data included in databases, transfer radiative codes

HT profile: Speed dependent hard collision model + correlation between velocity- and internal-state-changing collisions

- HT profile can be expressed as a combination of Voigt profiles =

- Equivalent to simplified profiles in its different limits \Rightarrow it can be
- It is capable to represent isolated line shapes of various systems
- First-order line-mixing can be easily included

Current accurate spectroscopic measure

Systems: CO₂, CH₄, O₂, CO, NO₂, N₂O, HCl,... and H₂O

Corresponding data included in databases, transfer radiative codes

Some remaining issues:

- Few data available for temperatures other than room temperature
- Highly accurate data often cover small spectral ranges only
- First-order line mixing not sufficient for large line-mixing effects (e.g. O₂ A band, CH₄, CO₂ Q-branches)

Some remaining issues:

- Few data for temperatures other than room temperature
- Highly accurate data often cover small spectral range only
- First-order line mixing not sufficient for large line-mixing effects (e.g. O₂ A band, CH₄, CO₂ Q-branches)

- Modeling of line-mixing effects

- Measurements of LM matrix elements from experimental data

← Fits of a ground based transmission spectra in the region of the $2v_1 + v_3$ band of CO_2

effects (e.g. O₂ A band, CH₄, CO₂ Q-branches)

odeling of line-mixing effects

Measurements of LM matrix elements from experimental data

Line shape modeling and line intensity

- Greenhouse gases remote sensing requires absorption cross-section modeling with unprecedented high accuracy
- Line intensity and shape parameters must be determined with accuracy better than a few per mill

- Line intensity, S is typically determined from fit of measured spectrum assuming a line-shape function. S is always assumed to be independent of pressure.
- Line-shape function, ϕ_{LS} :
- Simplest case: Voigt profile (Doppler and pressure broadening), but leads to large deviation from the measured spectrum.
- Sophisticated profiles account for the speed dependence of collisional broadening and shifting; collision-induced velocity changes; collisional line mixings.
- HTp leading to good agreement (within a few per mill)
 with the measured spectrum in the central region of line
 for most molecular systems.

The impact approximation

The spectral density or the line shape of transition ϕ_{LS} is given by

$$\emptyset_{LS}(\tilde{\sigma}) = \frac{1}{\pi} Re \int_0^\infty e^{-i\tilde{\sigma}t} ACF(t) dt$$

The impact approximation assumes that:

- Collisions are completed: the duration of collisions ($\tau_c \sim 1$ ps) is negligibly small with respect to the interval between successive collisions ($\sim 1/\Gamma$).
- Negligible influence of the finite duration of collisions: valid only for $|\omega \omega_0|^{-1} >> \tau_c$ or for $|\sigma \sigma_0| << (2\pi c \tau_c)^{-1}$
- \Rightarrow This is not valid anymore when $|\sigma \sigma_0|$ is comparable or larger than $(2\pi c\tau_c)^{-1}$ (when $|\sigma \sigma_0|$ is greater than a few cm⁻¹)

Impact line-shape models fail to reproduce measured spectrum in the line wings. This can lead to significant consequences on the retrieved line intensity and the spectrum modeling!

The case of HCl transitions

Fitting the measured spectra with an "impact" line shape: sdV+LM

The case of HCl transitions

Fitting the measured spectra with an "impact" line shape: sdV+LM

The case of HCl transitions

Fitting the measured spectra with an "impact" line shape: sdV+LM

Influence of ongoing collisions

$$ho_m(t)/
ho_m(0)$$
=(1-P a_m) $e^{-Pt/ au_m^\infty}+Pa_me^{-t/ au_m^0}$

The total spectrum can be modeled as a sum of two contributions:

- An intense and narrow Lorentzian at the center of the line
- A weak and large Lorentzian whose magnitude increases with pressure

Intensity depletion predicted by rCMDS

Preliminary results on O₂

Intensity depletion measured for CO₂

JQSRT 324, 109055 (2024)

Intensity depletion measured for CO₂

Intensity depletion measured for CO₂

Conclusions and future studies

Spectral shape is a key issue for high precision remote sensing

- When line is isolated, the Voigt profile fails to model isolated line-shape, velocity effects must be considered
- When lines are closely spaced, line-mixing should be accounted for
- Intensity depletion: A new parameter quantifying the pressure dependence of the retrieved intensity and its temperature dependence for each line of each active molecule / collision-partner
- What will be the consequences for applications?
- Determine the contribution of molecular complexes to the observed depletion?
- Contribution of the far line wings in the continuum?