Amélioration des mesures Doppler, Mosaïque de cisaillement et Champs 3D Métropole

Antoine Kergomard, Clotilde Augros, Météo France, Forum des Utilisateurs Radar, Mardi 2 Février 2009

- Principe de la mesure Doppler et problèmes de qualité actuels
- Améliorations proposées
- Une application de la mesure Doppler : la mise en place d'une expérimentation de mosaïque nationale de cisaillement de basses
- Champs 3D métropolitains

2

Principe de la mesure Doppler et problèmes de qualité actuels

• Vitesse radiale = composante du vecteur vent parallèle à l'axe de visée du radar

 $d\Phi$ = différence de phase entre 2 impulsions radar

dt = **3 ms** (temps entre 2 tirs radar, appelé **PRT**)

 λ = longueur d'onde (5 cm pour un radar bande C)

- On mesure en réalité la détermination principale $d\Phi'$ de $d\Phi$ (entre $-\pi$ et π)
- \rightarrow la vitesse mesurée est comprise entre –Vnyquist et + Vnyquist (+ ou 5 m/s)
- → ambiguïté dès que la vitesse vraie sort de cette plage, elle est alors « repliée » dans l'intervalle de Nyquist

Principe de la mesure Doppler et problèmes de qualité actuels

• On utilise la méthode dite du « triple PRT » pour lever les ambiguïtés de mesure

- La combinaison des 3 vitesses ainsi mesurées permet de restituer la vitesse vraie jusqu'à une vitesse Vne de + ou 60 m/s (avec la configuration actuelle des radars du réseau)
- Malgré cette méthode, de nombreux pixels restent mal dépliés

 \rightarrow Problème pour le modèle AROME (on recommande actuellement l'application d'un filtre médian 5x5 km² avant assimilation);

 \rightarrow Problème pour les champs 3D métropolitains de réflectivité et de vent (où on applique aussi un filtre 5x5 km²)

→Problème pour l'identification des structures de cisaillement / convergence de petite échelle (énormément de fausses alarmes actuellement !)

Améliorations proposées

Résultats : exemple sur le radar de Trappes
Images de vitesse radiale (m/s) 512x512 km le 19/01/2009 à 1500 UTC (élévation 0.8 °)

Basses PRFs (moyenne de 333 Hz) et V_{NE}=60 m/s → 5935 valeurs aberrantes de vitesse :16,5 % d'erreurs

Hautes PRF (moyenne de 471 Hz) et V_{NE}=44 m/s → 2011 valeurs aberrantes de vitesse : 5,3 % d'erreurs

L'implémentation de ces améliorations sur les radars opérationnels va se dérouler de manière progressive (radar après radar) à partir de 2010.

Expérimentation de production d'une mosaïque nationale de cisaillement de basses couches

- Objectif : créer à partir des données Doppler une mosaïque nationale d'indicateur de cisaillement horizontal de basses couches (cisaillement horizontal maximal entre 0 et 3 km) pour détecter les fronts de rafales et les tornades
- Premiers résultats à partir d'un radar pour un site donné:

Indicateur de cisaillement sur un pixel = gradient maximal de vitesse radiale entre ce pixel et l'un des 4 pixels voisins

→ Bonne détection des lignes de cisaillement associées au lignes de convergence mais risque de fausses alarmes si la vitesse radiale comporte des erreurs

Un réseau dense : la clé des champs 3D

- ARAMIS : Application Radar A la Météorologie Infra-Synoptique
- 24 radars :
 - 22 Doppler
 - 10 à double polarisation
- Grezes et Plabennec prévus Doppler en 2010
- Au départ : une expérience concluante sur la région parisienne en 2007
- Le produit 3D : une mosaïque nationale de vent et de réflectivité 3D basée sur :
 - L'exploration volumique de l'ensemble des radars
 - La combinaison des mesures Doppler des radars voisins (distance moyenne inter-radars ~ 150km)

Description de la chaîne de traitement

- En entrée : les fichiers pour AROME 15mn : contiennent les tours d'antenne de réflectivité, de vitesse radiale, les données « Type d'écho » (bruit,pluie, mer, ciel clair), l'advection.
- Filtrage médian des Vr, pour suppression des repliements
- Synchronisation des tours d'antennes Z et Vr par rapport à l'heure du produit
- Interpolation de type Cressman des données de Z et de Vr dans la grille finale de restitution
 - Calcul de la mosaïque 3D de réflectivité (maximum ou pondération en fonction de la distance)
 - Calcul de la mosaïque de vent (algorithme MUSCAT)

POST-TRAITEMENT

PRETRAITEMENT

TRAITEMENT

 Fabrication de fichiers au format BUFR pour les terminaux de visualisation des prévisionnistes

Le produit Champs 3D : Carte d'identité

- Produit final, en projection stéréographique polaire, de résolution :
 - Horizontale : 2.5km
 - Verticale : 500m
- 24 niveaux de 500m à 12000m
- 5 paramètres 3D : réflectivité, vent et divergence
- Couverture globalement bonne, mais plus faible dans les basses couches (peu de zones de recouvrement entre radars)

(Basé sur les modes d'exploitation des 23 radars au 25 Janvier 2010)

Le 2D issu du 3D : une perspective intéressante

- Dijectif : synthétiser l'information 3D en une seule image 2D
- Différents paramètres calculables : VIL, Zmax, EchoTop

Un autre produit 2D issu du 3D pour la détection de la grêle

POH (Delobbe et Holleman, 2006) :

POH=0.319+0.133x(Alti_iso-45dBZ - Alti_iso-0°C)

Trace de POH 20080515 (Rayon=100km) site=0.8deg

Vent 3D : Des calculs lourds

4 Mars 2009 (1)

Coupe verticale, 4 Mars 2009, 0600 UTC

4 Mars 2009 (2), Validation de modèles

Expérience de DPREVI/LABO

- <u>Objectif</u>: évaluer l'intérêt de ces données pour la prévision opérationnelle (compréhension pour l'analyse, apport pour la prévision, notamment immédiate)
- Expérience menée sur des épisodes pluvieux de Août à Novembre 2009
- Un retour globalement positif, mais...
 - Difficile d'évaluer objectivement les champs en raison du manque d'observations de référence à l'échelle étudiée
 - Miise en évidence de vents erronés sur des situations d'air clair (migration d'oiseaux)
 - peu d'information dans les basses couches, problème inhérent à la mesure (peu de recouvrement en dessous de 1000m)
 - Certaines situations pluvieuses problématiques
- Un outil intéressant pour valider les sorties modèles
- Un grand intérêt du champ de divergence pour la prévision immédiate
- Une étude menée par le CMIR/SE sur un cas cévenol montre un intérêt notable de ces champs 3D pour la reconnaissance précoce des orages multicellulaires (Présentation de F. Saix)

Perspectives pour les champs 3D

- Mise en place d'un code qualité pour le vent et pour la réflectivité (statique dans un premier temps).
- Visualisation sous synergie du nouveau format BUFR, qui permettra la visualisation de coupes verticales
- Prise en compte du relief pour l'interpolation (travail d'Olivier Bousquet, CNRM/GMEI)
- Tests d'intégration à l'environnement SOPRANO
- Mise en opérationnel en 2010
- Production des champs 2D issus du 3D en opérationnel à l'horizon 2011.

Merci!

METEO FRANCE Toujours un temps d'avance

24 Janvier 2009 (1), Tempête Klaus

24 Janvier 2009 (2), Tempête Klaus

Améliorations proposées

 Algorithme de dépliement des vitesses supérieures à la vitesse maximum mesurable à partir du champ d'advection

Vitesse radiale repliée dans l'intervalle de[-40, +40 m/s]

<u>Test sur le cas de la tempête du</u> <u>24 janvier 2009 (radar de</u> <u>Toulouse à 0830 UTC) :</u>

21

L'algorithme compare l'image de vitesse radiale (3) qui contient des zones mal dépliées au champ d'advection (1) et « déplie » les vitesses lorsque l'écart est supérieur à 2xVNE (2x40=80 m/s ici) → Les erreurs sont bien éliminées sur l'image (4)

Toujours un temps d'avance

éliminées sur l'image (4)