Wind Resource Assessment Using Long Range Pulsed Doppler Lidar

15th Coherent Laser Radar Conference

22-26 June 2009 – Toulouse, France

Stephen M. Hannon Lockheed Martin Space Systems Company Sensing & Exploration Systems Lockheed Martin Coherent Technologies (LMCT)

Exciting Operational Progress

- Wind shear alerting: Japan, Hong Kong & Las Vegas
- New (2008) capacity-enhancing procedures based on lidar wake vortex observations
 - Improved closely spaced parallel runway operations
 → FAA National Rule Change
 - Enhanced departure queuing at Paris Charles de Gaulle
- Bankability for mast-replacement 'vertical' lidars in wind energy market

Overview

- Wind resource characterization motivations
 - Support to site development
 - Support to operations
- Pulsed Doppler LIDAR background
 - Specifications and capabilities
 - Sample results and validation measurements
 - Siting strategies and comparison results
 - Terrain-following wind speed views
- Summary

Wind Farm Site Development

- Challenge: available reference data is rarely on the site being developed
- Solution: combine short-duration site data with reference site data to yield site-specific long-term wind climatology
 - determine correlation over 1-2 year period
 - apply this relationship to determine an historic estimate at the site
 - apply weighting to finalize the long-term estimate at the site

Estimate what would have happened over the past several decades
Climatology and statistics improve accuracy of P90 and rare events (e.g., 50 yr gust)

Wind Characterization Key to Wind Farm Development

Current State

Point Data Collection - Mast anemometer(s) - Sodar(s) - Emerging short-range lidars

Engr/CFD Modeling to Extend to Area Coverage -Complex terrain, obstacles and/or environments difficult to model accurately

Model-Driven Predictions Anchored at One or a Few Points

Long Data Collection Periods Required to Resolve Uncertainties and Spot Check Problem Areas Current approaches see large (>10-20+% at times) errors in predicted versus observed energy production levels

> Wind resource characterization is a major factor

Site Layout Often Sub-Optimal

Wind Farm Operations

- Wind integration costs are a strong function of wind variability and uncertainty
- Better monitoring/knowledge of the wind over large areas can result in:
 - Ramp event prediction
 - Improved commitment and dispatch decisions
 - Improved (re)synchronization across multiple farms
 - Reduced fatigue loads and associated O&M costs

Long Range 3D scanning pulsed Doppler LIDAR

- Commonly referred to as a 'horizontal' LIDAR
 - Contrasts with short range, 'vertical' LIDARs
 - Fundamental principles are the same
- Measures wind at high spatial resolution in large volumes
- 'High resolution' means ~100m (x,y), ~5 m (z)
- 'Large' means 10-20km horizontal, 200+ m vertical
- Primarily deployed at airports for wind shear alerting to ATC/pilots
- How would this technology benefit the Wind Energy industry?

Beam Is Scanned to Provide 2-3D Spatial Coverage

- 2 μm wavelength system: 60 m (400 nsec) Pulse transmitted @ 500Hz
- 1.6 μm wavelength system
 ~40 m (270 nsec) Pulse
 transmitted @750Hz

WindTracer

'Pencil' Beam Width 10-30 cm

Portion of Scattered Light Collected By Telescope

Eye Safel

Relative Wind Induces a Doppler Frequency Shift in the Backscattered Light; This Frequency Shift Is Detected by the Sensor

- Doppler Lidar = Infrared Doppler Radar
- Infrared: Instead of Raindrops, Lidar Uses Natural Particulates
- Doppler: Velocity/Wind Sensing (Strength)
- Radar: Accurate Position Information

Return Light is Doppler Shifted by Moving Aerosols

Demonstrated ~15 km performance coverage (250+km²) in Colorado

Simple config changes allow trade of update rate and spatial resolution for greater range

Better performance will be achieved for lower altitude, higher aerosol loading environments

Demonstrated >20 km Performance 1 Hz Update Rate, Colorado USA

Demonstrated 25 km Performance 1 Hz Update Rate, Colorado USA

Velocity Azimuth Display Vector Wind Technique

LIDARs measure relative wind vector along each line of sight or look direction:

$$V_{LOS}(R) = \vec{\mathbf{L}} \bullet \vec{\mathbf{W}}(h, R)$$
$$\Delta f_{LOS}(R) = -\frac{2}{\lambda} V_{LOS}(R)$$

Harmonic analysis applied

- Amplitude relates to wind speed
- Phase related to wind direction
- DC offset relates to vertical motion (3D)

All of these averaged over the conic cross section at that particular altitude

VAD Technique Applied to Volumetric Long Range Data

- Collect radial velocity data over a large spatial region
- Scan in azimuth at a constant elevation angle --- a tilt
- Apply VAD algorithm to the annular sector and derive vector velocity estimate for center of sector
- Repeat for next overlapping sector
- Derive vertical profile from multiple tilts & ranges

Disparate Requirements for LIDAR

Site Development

- Mast anemometer augmentation or replacement as virtual tower
 - "Point" measurement: cover swept area of turbine at a single position
 - Short range (<200 m) adequate
- Large-area mapping to simultaneously sample multiple locations at a site
 - Mid range (3-5 km) may be adequate for small sites
 - Long range (8+ km) needed for larger sites
 - Very long range (20+ km) beneficial for offshore

Disparate Requirements for LIDAR (cont.)

Wind Farm Operations

- Feed forward control applications?
 - Install short-range LIDAR on each turbine
 - Utilize longer-range LIDAR to provide direct observation for multiple turbines
- Wind integration applications?
 - LIDAR as part of sensor suite for large-area 'live' wind resource mapping
 - Approaching wind shifts, ramp events
 - Drives sensor to very long-range performance (20+ km)

Measurements at RES Site

- Large mesa-like site
- WindTracer[®] and 50 m fixed mast
- One month of data collection (June 2007)

Scan Strategy

- Volumetric 360 deg scan with 10 minute revisit time
- 16 Tilts utilized to ensure measurements between 70 and 90m AGL available at all viewable points within 6 km of lidar
- Resolution of 100 m radially, 2° in azimuth, <1° elevation
- Indicatively 100m resolution (x,y,z)

GOAL: 'Terrain-following' gridded output of wind vectors at 10 minute intervals

Sample Cross-Comparison Data

Sample data from June 7

Lidar provides spatial distribution of velocities, but at a slower update rate at each point in space

Solid agreement for wind speed and direction

Azimuth to Tower: 326.1 degrees (True) Dist Lidar to Tower: 3442 meters

Correlation Analyses

- Entire month's data is utilized (June 2007)
- Smoothed anemometer data with a 10 minute wide sliding window average
- Selected best time match condition for lidar scan over the tower

 Lidar data provides 'instantaneous' vector wind estimates separated in time by 10 minutes

Wind Speed Comparisons

 Mean wind speeds agree to roughly 0.02 m/sec!

 Correlation is 96%

 RMS difference is 1.1 m/sec

Wind Direction Comparisons

- Mean/median wind direction agrees to ~2 deg
- Correlation* is 96%
- RMS* difference is 15 deg

*Conditioned on 60-360 deg wind direction and >3 m/sec wind speed

22 June 2009 - 22

Terrain-Following Wind Speed Map

Month-Long Average Wind Speed at Nominal Hub Height (80 m)

Terrain-Following Wind Map Showing Onset of Nocturnal Jet

Four Sample Points Showing Distinct Height-Time Speed Development

Wind Characterization in Support of Wind Farm Development

Current State

Point Data Collection - Mast anemometer(s) - Sodar(s) - Emerging short-range lidars

Engr/CFD Modeling to Extend to Area Coverage -Complex terrain, obstacles and/or environments difficult to model accurately

Model-Driven Predictions Anchored at One or a Few Points

Long Data Collection Periods Required to Resolve Uncertainties and Spot Check Problem Areas

Future State

Simultaneous Large Area Data Collection

- 3D Doppler lidar w/ 200 km² coverage
- Potentially augmented w/ precision point sensor
- (Terrain-following) gridded vector maps
- Turbulence mapping also possible

Engr/CFD Modeling Requirements Greatly Relaxed, Accuracy Improved

> Data-Driven Prediction and Real Wind Maps

Data Collection Periods Reduced and Rapidly Adapted to Meet Needs

Site Layout Often Sub-Optimal

Site Layout Optimized!

Summary

• An exciting time for terrestrial Doppler wind lidar

- Multiple commercial systems being developed and sold
- Short range to long range versions
- Credibility growing in multiple markets
 - Operational airport wind hazard measurements
 - Mast anemometer replacement or augmentation

• Wind Energy industry of special focus recently

- Pulsed Doppler LIDAR demonstrations show promise with excellent early validation results
- Disparate requirements challenge system design
 - Site selection and wind farm development
 - Wind farm operations: 15+ km performance attractive

