Ultra-sensitive, room-temperature THz detector using nonlinear parametric upconversion

MIT Lincoln Laboratory

M. Jalal Khan
Ph: 781-981-4169
Email: mjkhan@ll.mit.edu

Jerry C. Chen
Ph: 781-981-3728
Email: jcchen@ll.mit.edu

Z-L Liau
Ph: 781-981-2242
Email: liau@ll.mit.edu

Sumanth Kaushik
Ph: 781-981-1067
Email: skaushik@ll.mit.edu

This work is sponsored by the Office of Secretary of Defense Director of Defense Research and Engineering Quick Reaction Funding, Naval Surface Warfare Center Dahlgren Division Chemical, Biological, and Radiological Defense Division and the United States Air Force under AF Contract #FA8721-05-C-0002. Opinions, interpretations, recommendations and conclusions are those of the authors and are not necessarily endorsed by the United States Government.
Outline

• Motivation

• Optical Detection of THz
 – Experiment
 – Results
 – Conversion efficiency enhancements

• Summary and Future Work
Some Terahertz Applications

THz Imaging

Concealed Weapon Detection

Medical Applications

Voids in Space Shuttle Foam

THz Vibrometry

THz Spectroscopy

MIT Lincoln Laboratory

UNCLASSIFIED – Approved for Public Release; Distribution is Unlimited
State-of-Art THz Direct Detectors
Significantly above Quantum Limit

Comparison of Optical and THz Direct Detectors

THz Receiver Challenges
- Low-noise (quantum limited)
- High bandwidth
- Frequency agile
- Room Temperature

Receiver technology at optical frequencies has significantly better performance
Leveraging IR Technology by Terahertz to Optical Conversion

- THz Photon
 - Uncoated
 - Large

- THz Optics
 - Inefficient
 - Cryogenic
 - Slow

- THz Detector
 - Photon-counting
 - Large bandwidth
 - Room temperature
 - Efficient

- Processing

Leverages mature technology at IR regime to address THz “gap”
Second-order - $\chi^{(2)}$- Nonlinear Optical Interactions

Polarization = $\chi^{(1)} E + \chi^{(2)} E^2$

- Frequency mixing via non-linear polarization current density
- Very fast
- Pump photons are down-converted to signal and idler
- Efficiency is highly sensitive to phase-matching

Detection of optical sideband photon implies presence of THz photon
Optical Detection of THz: Laboratory Implementation

- THz source: Backward Wave Oscillator (2.5 mW at 700 GHz)
- Optical Source: 1550 nm, 1 W avg, 10 ns pulses, 200 kHz rep rate
- Commercial telecomm thin film band-edge and band-pass filters
- Optical Receiver: Geiger-mode Avalanche Photodiode (GM-APD) dark count 20kHz and $\eta \sim 20\%$
Optical Detection of THz: Geiger-mode Avalanche Photo Diode Experimental Results

- GM-APD counts number of 1-ns gates with photons in 1 s
- 200K pulses / 1 s
- $P_{\text{Idler}} = K P_{\text{THz}}$: Idler attenuated by 69 dB to reach noise level
- Min detectable energy: 3.2×10^{-19} J / 1 ns gate
- $\text{NEP}_{\text{THz}} \approx 4.5 \text{ pW/Hz}^{1/2}$
Improving Conversion Efficiency using Quasi Phase Matching (QPM)

- Efficient nonlinear conversion requires phase-matched process
- Phase-match by reversing polarity of nonlinearity periodically
- Achieved by bonding orthogonal orientations
- Phase-matched conversion scales as L^2
Quasi Phase-matching by Diffusion-Bonding Bulk GaAs

Initial Results
- Initially exposed surfaces marred by contact layers;
- Improved polish quality of top and bottom surfaces
- Experimented with different contact layers
- Bond interface is clean

Improved Process
- Top Surface
- Bond Interface
Efficient Upconversion: Bulk GaAs vs. Diffusion-bonded QPM GaAs

- Phase-matching is necessary to enhance conversion efficiency
- DB-GaAs (QPM5, QPM6) show efficiency enhancement > 5 dB.
- QPM4: orientation of bonded crystals was uncertain
- AR-coated QPM shows additional efficiency ~ 2.5 dB

Conversion efficiency enhanced in quasi-phase matched GaAs by 5 dB
THz Upconversion Detector Performance

Current Performance: NEP ~ 800 fW/Hz$^{1/2}$
Expect to scale NEP to 40 fW/Hz$^{1/2}$ in the near future
Summary

- Demonstrated sensitive optical detection Terahertz at room-temperature using commercial telecomm components
- Fabricated quasi-phase matched GaAs crystals using a diffusion bonding process
- Developed an AR coating for 1550nm radiation that absorbs minimally at THz
- Demonstrated conversion efficiency enhancements due to QPM AR-coated GaAs crystals
- THz detector NEP ~ 800 fW/Hz^{1/2}; comparable to liquid He cooled bolometer
- Expect significant improvements using more intense optical pump beam and longer QPM crystals.
Terahertz Transmission Properties

Material Attenuation at 326 GHz

- Data for typical sample thickness
- Loss increases significantly with frequency

Atmosphere Attenuation at THz

- Frequency (GHz)
- Atmospheric Absorption (dB/km)

- Bangkok
- Basra
- Berkeley
- Bellingham
- Boulder
- Buffalo
Optical Detection of THz: Comparison with Theory

Experiment

![Optical Idler at chopper frequency generated from THz upconversion](image1)

- Harmonics
- 3 dB discrepancy between theory and experiment
- Mode mismatch between optical pump and multimode THz beam
- Phase mismatch Δk uncertainty
- Plane wave estimate used instead of Gaussian beams approximation

Theory

![Non-linear Crystal](image2)

\[
P_{\text{Idler}}(L) = \frac{1}{R_v} \int_{-\Delta f}^{+\Delta f} V^2 df \right]^{1/2}
\]

\[
P_{\text{Idler}} \approx 220 \text{ pW}
\]

\[
P_{\text{Pump}} = 100 \text{ [mW]}
\]

\[
P_{\text{Idler}}(L) \approx 440 \text{ pW}
\]

\[
\frac{P_{\text{Idler}}(L)}{P_{\text{THz}}(0)} = \frac{8\pi^2(d_{\text{eff}}')^2L^2I_{\text{Pump}}}{\epsilon_0n_Tn_tn_p\lambda_i^2} \left| \frac{\sin\left(\frac{\Delta kL}{2}\right)}{2} \right|^2 T_{\text{Filter}}
\]
Quasi Phase-matching by Diffusion-Bonding Bulk GaAs

- Fabricated 2 – layer, 3 – layer and 4 – layer diffusion bonded stacks
- Clean bond interfaces achieved
- Improved in-house polishing capability
- AR-coating 2-layer stack
Enhanced Upconversion using Quasi Phase-matched GaAs

- Demonstrated enhanced conversion efficiency with QPM crystal
- Upconverted THz signal is generated at chopper frequency
- Two-layer QPM crystal has ~5dB better performance than 4 mm bulk GaAs
- Two-layer QPM crystal has >20 dB better performance than 8 mm bulk GaAs
Optical Source Development and GaAs Characterization

Adaptable, High-power, Pulsed Optical Source

- Developed a highly adaptable high-power pulsed source; variable rep. rate, pulse width, center frequency
- SNR ~ 50dB; CW power > 4W; Peak power ~ 25kW

GaAs Characterization – Terahertz and Optical Frequencies

- Optical group index, \(n_g = 3.56 \); loss, \(\alpha = 0.065 \text{ cm}^{-1} \)
- Measured transmission spectral scans between 500-700 GHz
- Estimated THz loss, \(\alpha = 0.2 \text{ cm}^{-1} \);
Optimizing THz-to-Optical Conversion: Ongoing Experiments

- **New THz source: Virginia Diode Amplified Multiplier Chain**
 - Near Gaussian spatial mode
 - Spatial mode independent of frequency
- **Testing new QPM crystals**
- **Preliminary results indicate that better mode results in an improvement of > 3 dB**