

THE FRENCH AEROSPACE LAB

15th Coherent Laser Radar Conference

List of presentations Click on title to download (beware: several presentations are unavailable)

Session	Main Author	Title
Keynote	Flamant P.	Lidar evolution over the last 30 years: witness and actor, a confrontation of worldwide and local points of view.
Keynote	Vaughan M.	Reflections on interferometry
1	Canat G.	High peak power Erbium-Ytterbium MOPFA for coherent Lidar anemometry
1	Khan M. J.	Ultra-sensitive, room-temperature THz detector using nonlinear parametric upconversion
1	Latrasse C.	Low noise semiconductor lasers for remote sensing applications
1	Mizutani K.	Conductive-cooled 2micron laser development for CO2 and wind measurements
2	Brewer A.	Preliminary Shipborne Doppler Lidar Results from the VAMOS Ocean-Cloud-Atmosphere- Land Study Regional Experiment (VOCALS-REx)
2	Hannon S.	Wind Resource Assessment Using Long Range Pulsed Doppler Lidar
2	Koch G. J.	Wind Measurement Intercomparisons using New Compact, Pulsed, 2-Micron, Coherent- Detection Doppler Lidar Transceiver
3	Durand Y.	A-SCOPE: objectives and concepts for an ESA mission to measure CO2 from space with a lidar
3	Flamant P.	The A-SCOPE Project and After
3	Ishii S.	Development of Coherent 2- μ m Differential Absorption and Wind lidar
3	Singh U.	High Repetition Rate Pulsed 2-Micron Laser Transmitter for Coherent CO2 DIAL Measurement
4	Iwai H.	Comparison of dual-Doppler lidar measurements of wind with helicopter measurements.
4	Kavaya M.	Development of a Compact, Pulsed, 2-Micron, Coherent-Detection, Doppler Wind Lidar Transceiver
4	Lolli S.	Long Range Wind Lidar for Atmospheric Dynamics Studies
4	Rahm S.	Airborne Doppler Lidar Wind Measurements from Polar to Tropical Regions

THE FRENCH AEROSPACE LAB

5	Banakh V.	Visualization of 2-D transverse velocity fields in the atmosphere
5	Belmonte A.	Performance of coherent lidar receivers using atmospheric compensation techniques
5	Boquet M.	Analysis and optimization of Pulsed Doppler Lidar Wind Profile measurement process in complex terrain
5	Gatt P.	Matched Filter CNR, Diversity and Signal Detectivity for Deterministic and Random Coherent Ladar Signals
6	Durand Y.	Lidar technology pre-development in support of A-SCOPE, the ESA mission to measure CO2 from space
6	Gibert F.	Turbulent CO2 flux measurements by lidar: length scales, results and comparison with in- situ sensors
6	Joly L.	Laser diode absorption spectroscopy for accurate CO2 line parameters at 2 μm . Consequences for space-based DIAL measurements
6	Sakaizawa D.	Complementary measurement with multi-positioned in-situ sensors and the 1.57 μm laser absorption spectrometer
7	Brousmiche S.	Parameters Estimation of Wake Vortices in Ground Effect
7	Frehlich R.	Data Requirements for Doppler Lidar Measurements of Winds from Space
7	Kavaya M.	Computer Simulation of Global Profiles of Carbon Dioxide Using a Pulsed, 2-Micron, Coherent-Detection, Column-Content DIAL System
8	Besson C.	Pulsed 1.5 µm LIDAR for axial aircraft wake vortex detection
8	Fujiwara C.	Features of dust devils in the urban area detected by a 3-D scanning Doppler lidar
8	Hill C.	Airport trials with the Aviation ZephIR coherent lidar
8	Schmitt N. P.	A340 flight test results of a direct detection onboard UV LIDAR in forward-looking turbulence measurement configuration
8	Valla M.	1.5µm lidar for helicopter blade tip vortex detection
9	Dierking M. P.	Genetically Optimized Periodic, Pseudo-Noise Waveforms for Multi-Function Coherent Ladar
9	Jameson D.	Vibrometry with atmospheric compensation
9	Totems J.	Signal Processing Methods and Poly-Pulse Waveforms for Laser Vibrometry in Pulsed Mode
10	Kendrick R. L.	Anisoplanatic wavefront error estimation using coherent imaging
10	Marker D.	Volume control manifold for membrane adaptive optics
10	Wenski T. E.	Multiple screen image correction for digital holography
11	Anasimov I.	High Resolution Sparse Aperture Imaging Testbed
11	Karr T. J.	Power, Aperture and Wavelength Scaling of Synthetic Aperture Laser Radar
11	McManamon P.	Conformal EO Sub- Aperture Array Based Laser Radar with non mechanical beam steering

THE FRENCH AEROSPACE LAB

11	Stokes A. J.	Increasing image contrast using Golay-like sparse aperture arrays
12	Chimenti R. V.	A review of sparse frequency linearly frequency modulated (SF-LFM) laser radar signal modeling with preliminary experimental results
12	Jolivet V.	Coherent combining on a remote surface of fiber amplifier arrays after propagation through turbulent atmosphere
12	Pedersen A. T.	Investigation of noise in Lightwave Synthesized Frequency Sweeper seeded LIDAR anemometers from leakage through the AO Modulators
13	Frehlich R.	Coherent Doppler Lidar for Wind Energy Research
13	Lindedlöw P.	From Prototype to Standardization – Five Years of LIDAR Anemometry in the Wind Energy Industry
13	Parmentier R.	WindCubeTM pulsed Lidar compact wind profiler: Overview on more than two years of comparison campaigns
13	Pichiguna Y.	Lidar study of the nocturnal boundary layer at the heights of modern wind-turbines
14	Jolivet V.	Coherent laser radar vibrometry for modal analysis in earthquake engineering
14	Lutzmann P.	Off Line-of-Sight Measurements of Target Vibrational Features Using Laser Vibrometry
15	Abdelazim S.	All-fiber Coherent Doppler LIDAR for Wind Sensing
15	Newbury N.	Precision ranging LIDAR using femtosecond fiber lasers
15	Pillet G.	Wideband Dual-Frequency Lidar-Radar: Waveform Generation and Field Experiment
15	Stafford J. W.	Holographic aperture ladar laboratory demonstration
Poster	Jacob D.	Coherent detection post detection SNR for receivers employing incoherent and coherent integration
Poster	Michaille L.	System design and preliminary characterisation of a fibre-based pulsed MOPA system operating at a wavelength of 2.05 mm
Poster	Prasad N. S.	All-solid-state UV transmitter development for ozone sensing applications
Poster	Valla M.	Image quality study in spectral domain for Synthetic Aperture Ladar
Poster	Welliver M. C.	On the Use of Optical Amplifiers in Coherent Receivers

