CF-netCDF and CDM

Ethan Davis, John Caron, Ben Domenico, Stefano Nativi* UCAR Unidata Univ of Florence*

OGC in MetOcean, Toulouse, France, November 2009

CF-netCDF and CDM

- CF-netCDF
- CDM/netCDF-java
- TDS
- Using CF-netCDF in OGC Standards
 - Mapping between CF-netCDF and GML
 - Status of CF-netCDF in OGC

CF-netCDF

- Widely used encoding for gridded data with proposed additions for point, profile, trajectory, etc
 - Storage standard for many large projects
 - AMIP
 - CMIP5
 - 100S
 - MERSEA
 - ...
 - Read by many visualization/analysis packages
 - Ferret
 - GrADS
 - IDV
 - ...

netCDF

- Libraries, data models, and formats for array-oriented scientific data.
 - Simple and general data model
 - Simple encoding / file format (for netCDF-3)

netCDF-3 Data Model

A file has named variables, dimensions, and attributes. Variables also have attributes. Variables may share dimensions, indicating a common grid. One dimension may be of unlimited length.

netCDF-3 File Format

netcdf file = header data header = magic numrecs dim list gatt list var list = 'C' 'D' 'F' VERSION magic VERSION = \x01 | // classic format \x02 // 64-bit offset format = NON NEG | STREAMING // length of record dimension numrecs = ABSENT | NC DIMENSION nelems [dim ...] dim list // global attributes gatt list = att list = ABSENT | NC ATTRIBUTE nelems [attr ...] att list var list = ABSENT | NC VARIABLE nelems [var ...] ABSENT = ZERO ZERO // Means list is not present ZERO = x00 x00 x00// 32-bit zero NC DIMENSION = x00 x00 x00// tag for list of dimensions NC VARIABLE = x00 x00 x00// tag for list of variables NC ATTRIBUTE = x00 x00 x00// tag for list of attributes nelems = NON NEG // number of elements in following sequence dim = name dim length = nelems namestring name // Names a dimension, variable, or attribute. // Names should match the regular expression // ([a-zA-Z0-9_]|{MUTF8})([^\x00-\x1F/x7F-\xFF]|{MUTF8})* // For other constraints, see "Note on names", below.

...

Conventions for netCDF

- netCDF is intended to be self-describing
 - However, to fully understand the description, conventions must be agreed upon and used.
- Many netCDF attribute conventions have been developed over the years
 - CF, COARDS, GDT, CDC
 - ARGO
 - NUWG
 - ...

CF Convention

- Widely used, stable governance
- With CF can describe
 - Coordinate systems
 - Standard names (for geophysical quantities)
 - Other
 - Projections (and more general CRS to some degree)
 - Dimensionless vertical coordinates (sigma, hybrid, etc)
 - Climatological statistics
- Has been mainly for gridded data
 - Proposed changes for point, station, profile, trajectory, etc
 - Possible future proposals: radar, image, swath, ...

CF-netCDF Strengths

- Simple data model
- Dimensions are first-class objects, variables that share dimensions share coordinates
- Separation of data model and convention
- Not serialization of an applications internal data model

CDM/netCDF-java

- Data access layer
 - netCDF-3, netCDF-4
 - BUFR, GRIB-1, GRIB2
 - HDF, HDF-EOS, HDF5, HDF5-EOS
 - Radar: NEXRAD level II & III, DORADE, ...
 - GEMPAK, McIDAS
 - OPeNDAP

CDM/netCDF-java

- Coordinate System layer
 - Recognizes a variety of conventions including
 - CF, COARDS
 - NUWG
 - HDF-EOS
 - ...
- CDM Feature Types
 - Gridded data
 - Point Observation: point, station, profiles, trajectory, etc.
 - Radar
 - Image (not yet implemented, super-class of grid?)
 - Swath (not yet implemented)
 - Others?

CDM/netCDF-java

THREDDS Data Server

- Built on the netCDF-java library:
 - Can read various data formats
 - Understands various conventions
 - Uses NcML to
 - Correct, modify, and add metadata
 - Construct virtual aggregated datasets
- Supports various data access services:
 - OPeNDAP
 - OGC WCS and WMS
 - Several experimental protocols
 - Collection and Feature Type subsetting
 - Streaming

THREDDS Data Server

Using CF-netCDF in OGC Standards

- Mapping between CF-netCDF and GML
 - CSML
 - NcML-GML
 - ???
- CF-netCDF as an OGC Encoding Standard
 - Status

The Geosciences interoperability Infrastructure/resources

Standardizing the netCDF Infrastructure

Some on-going initiatives to make netCDF and Geospatial infrastructures/resources interoperable

Why NcML-G+

- To explicitly encode the full dataset complexity supported by CDM-netCDF
- Web Services (SOA and ROA) require XML-based encodings (i.e. infoset encodings)
 - A promising technology to underpin the most advanced functionalities (e.g. semantics)
- Need for a complete, well-defined, flexible, and relatively "low-level" (neutral) GML-based encoding.
 - The GML encoding of the netCDF/CDM data model seems to be a possible answer
- Bottom-up approach to complement the top-down approach followed by domain MLs

NcML-G+ possible benefits

- Standardization & Interoperability
 - it is a full GML profile;
 - it implements the netCDF data model generalizing and extending it applying the CDM;
- Data Model Harmonization and Multi-disciplinarity
 - it supports the encoding of different coverage & feature types (i.e. the CDM types);
 - it is neutral as far as application domain semantics is concerned;
 - it can be easily used by existing Community profiles (e.g. WaterML, GeoSciML, CSML, etc.)
 building specific semantics
 - it can be used in cross-domain applications;

CF-netCDF as OGC Standard

- Status of CF-netCDF encoding standard
 - Core: netCDF-3 file format
 - Extension: CF Convention
- Status of CF-netCDF as WCS extension

OGC CF-netCDF Standard

- Early December: vote on draft core CF-netCDF encoding standard
- Core specification based on NASA SPG standard for netCDF classic http://www.esdswg.org/spg/rfc/esds-rfc-011/ESDS-RFC-011v2.00.pdf
- Work underway on CF conventions standard
- Proposed to NASA SPG
- Targeted as first extension to OGC core CFnetCDF encoding standard.

Remaining Steps

- In early December, release candidate standard to the OGC Architecture Board for review. This review usually takes two weeks or less.
- Assuming a positive OAB review, the SWG votes to release the document for a 30 day public comment period.
- SWG works with OGC staff to prepare a press release.
- After 30 days, collate the comments (if any) and work the comments and edit the document
- SWG recommends a Technical Committee adoption vote.
- Adoption vote happens. Requires 60 days.

Extension for CF Conventions

- CF standard recently proposed to NASA
- http://www.esdswg.org/spg/rfc/esds-rfc-021
- Plan to base OGC CF extension on what has been submitted to NASA
- NASA submission takes middle ground between:
 - Spec that is simply a pointer to the CF docs
 - Spec that is simply a snapshot of CF docs

Relationship to WCS CF-netCDF

- Initial effort to establish CF-netCDF as a binary encoding spec is continuing
- WCS encoding spec includes specifics of WCS client server interactions as well as the CFnetCDF encoding
- Ultimately the goal is to harmonize the two initiatives so the WCS encoding points to the independent CF-netCDF spec.
- Other protocols may also cite the CF-netCDF encoding spec

Summary

- CF-netCDF encoding format
 - Simple data model and file format
 - Widely used
- TDS and CDM
 - Building upon existing systems and data
 - Bridging to developing standards
- Using CF-netCDF in OGC Standards