Implementation of WMO Information System in Japan Meteorological Agency

Eiji (aka Eizi) TOYODA
GTS/WIS Team, JMA

2nd workshop on the use of GIS/OGC standards in meteorology
Toulouse, France, November 2009
Topics of the talk

- WIS and activities in JMA
- What we expect for interoperability activity
 - OGC Met Ocean DWG and WMO/CBS IPET-MDI in mind
WMO Information System (WIS)

- **Sustain & improve GTS [part A]**
 - Legacy store-forward protocols, routing tables
 - Domain-specific data formats
 - Reliability precedes over flexibility and volume

- **Add new features [part B]**
 - Flexible and/or cost-effective communication
 - Data discovery, access, & retrieval (DAR)
 - Serve more diverse communities
 - Enhanced interoperability
GTS/WIS centers and standards

- **WMO Codes**
- **GTS Protocols**

Operation-critical data
- Data creation
- Metadata creation

Non-operation critical or high volume data
- Data creation
- Metadata creation

NMC NC/DCPC
- Data Push

RTH/WMC GISC/DCPC
- Data Push

Relayed Push
- Push/Pull
- Catalog Search

Protocol?
- Format?
- Protocol?
- Metadata Profile?
Three key factors of interoperability activity:

- New Standard
- New User Communities
- Traditional Practices
JMA activities for WIS

- **DAR Catalogue**
 - Further developing WMO profile of ISO 19115
 - SRU considered primary search protocol

- **Communication protocols**
 - OAI-PMH for metadata
 - Atom syndication for data

- **Data formats**
 - HTML5 Microdata
 - Data format interoperability

}\{ Blog-based Technologies
JMA has long experience

- As RTH of GTS: WMO No. 9 Volume C1
- Non-GTS data:
 General information catalogue (since 1997) now online and searchable: visit http://www.jma.go.jp/jma/kishou/177jmh/catalogue.html if you can read Japanese language :-)

Now working to establish WIS DAR standard and implementation
Further Development of WMO Metadata Profile

- WMO Core Profile to ISO 19115 Metadata
 - Ver. 1.1 endorsed by CBS-XIV (March 2009)
- Almost identical to ISO 19115 Core Profile
 - Some code tables added
 - No extra structure
 - No element additionally mandated
What is profile intended by ISO?

- Entire 19115 is too huge
 - 409 elements
- Core 19115 is too small
 - 22 elements
 - only 7 mandatory
- Users are supposed to select elements to suit application
 - that is profile
Metadata profiles in Japan

- **Generic GIS**
 - Japan Metadata Profile v2.0
 - by Geographical Survey Institute
 - http://zgate.gsi.go.jp/ch/jmp20/cle_met_right.html
 - (in Japanese)
 - Profile to ISO 19115 Core Profile
 - Conceptually parallel to INSPIRE

- **Oceanography**
 - Marine Metadata Profile
 - by Japan Coast Guard
 - (in Japanese)
 - Profile to JMP 2.0
Situation of metadata structure

Standard:
ISO 19115

Tradition:
WMO-9 Vol C1

New User:
hopefully emerging

since it's a new service
Proposal for DAR Metadata

- Discussion in IPET-MDI etc.
 - by JMA, CMA, and DWD

- Goal: practical guidance on Volume C1 to 19115 conversion
 - could be VolC1-type Profile
 - VolC1 Profile ⊃ WMO Core ⊳ ISO Core
 - or just a guideline is okay
 - more experience with new users/data will tell us better standard structure
Observation station mapping
Observation station mapping

- Very useful
- Is it DAR or service linked from DAR?
Metadata Search Protocols

- **ISO 23950 (aka ANSI Z39.50)**
 - old, binary, and non-HTTP
 - anybody here wants "raw" Z39.50?

- **SRU (Search by URL)**
 - HTTP-based simple protocol, intended to be gateway to Z39.50
 - minimal requirement for WIS centres

- **OGC CSW**
 - concept similar to SRU

Further work/experience/guideline desired
Situation of metadata search

Standards:
Z39.50/SRU/CSW

New User:
Natl CH, GEOSS, ...

Tradition:
?

since it's a new service
Protocol to synchronize metadata

- **GTS Practice**
 - METNO bulletin tells change of Volume C1
 - (of course) not for ISO 19115

- **OAI-PMH**
 - standard of Open Archive Initiative
 - used in SIMDAT project
 - Tokyo-Beijing synchronization test working

- Any other activity?
Situation of metadata distribution

Standard:
OAI-PMH

New User:
WIS Centres

Tradition:
METNO

but it's not for ISO metadata
Data transfer protocols

- Discussion was active since the onset of “Future WIS” concept
- Number of protocols have been proposed
 - Push
 - GTS store-and-forward
 - GTS-FTP, LDM, …
 - Middle: subscription
 - Pull
 - OPeNDAP
 - Pandora (REST used in JMA)
 - OGC WCS/WMS series
Situation for data transfer protocol

New Users: (diverse)

Tradition: GTS bulletin/FTP

Standards

we support diversity

there's no "one-size-fits-all" solution but some are more promising

if existing one doesn't work for you...
Push vs pull controversy

- **Management – pull**
 - in case of retry/backup/ad hoc setup recipient knows better what is needed

- **Popularity – pull**
 - everybody use the web
 - off-the-shelf httpd-CGI implementations
 - abundant knowledge on security

- **Delay – push**
 - polling is needed for pull protocols
 - average delay = $\frac{1}{2} \times (\text{poll interval}) \times (\# \text{ hops})$
JMA's blog-based proposal

- **HTTP-GET** for data distribution
- **Atom syndication** (aka RSS) for update notification
 - text data can be bundled
 - widespread use of GeoRSS as substitute of metadata catalog
- **Atom publishing** for time-critical message
 - REST: simpler than SOAP
Blog data server in work

- Apache HTTPd + Roller
- Atom Syndication
- HTML5 Microdata
 - Both human- and machine-readable data
Microdata display of SYNOP

► HTML code (extract)

```html
<section item="vevent int.wmo.synop">
  <ul>
    <li>coordinates:
      <span itemprop="vevent int.wmo.vevent.geo">+42.55;+9.48</span></li>
    <li>air temperature (degree Celsius):
      <span itemprop="int.wmo.prop.temperature">11.0</span></li>
    <li>pressure (hPa):
      <span itemprop="int.wmo.prop.pressure">1017</span></li>
  </ul>
</section>
```

► Rendering

- coordinates: +42.55; +9.48
- air temperature (degree Celsius): 11.0
- pressure (hPa): 1017
Data formats (1) aviation OPMET

- **Tradition**
 - METAR, TAF, SIGMET, …
 - AFTN limitations character set & message size

- **Users: aviation community**
 - seeking more quality and additional info
 - future of AFTN environment?

- **Standard**
 - XML
 - work in progress at CBS IPET-MDI
Data formats (2) grid data

- **Tradition: GRIB**

- **Many users:**
 - academia: CF-NetCDF
 - space science: HDF
 - GIS: GeoTIFF, ArcInfo, ERDAS, …

- **Possible way forward**
 - forced unification won't work
 - conversion
 - spec: comparison of data forms
 - terminology: common/ISO data models
Situation for data interoperability

Abstract Modeling

helps conversion efforts through common terminology & concepts

Alternative Standards

Tradition: GRIB/BUFR/TAC

New Users

so many...

strong ties

reluctant to use it
Future: web services & conversion

Standardised conversion will help:

- **WMS/WCS**
 - parameter `FORMAT=`
 - mapserver uses GDAL

- **Pandora (used in JMA)**
 - request header `Accept:` or filename suffix

- **OpeNDAP**
 - server: format-by-format implementations
 - client does not care about source data structure
Summary

- JMA in WIS: RTH on IMTN and prospective GISC
- Three keys of interoperability
 - traditional practice
 - new user community
 - standard
- Interoperability is desired for
 - metadata format & search protocol
 - data transfer protocol
 - data format

We have proposals & are open to discussion