

GMES Fast Track Service Land

Monitoring soil and vegetation fluxes of carbon and water at the global scale: towards a GMES service

Calvet JC, Météo-France Albergel C, Météo-France **Balsamo G, ECMWF Balzarolo M, UNITUS** Barbu A, Météo-France Boussetta, S, ECMWF Cescatti A, JRC/IES **Chevallier F, CEA/LSCE Delbart N, CEA/LSCE De Vries J. KNMI** Kullmann L, OMSZ Lafont S, Météo-France Mahfouf JF, Météo-France Maignan F, CEA/LSCE Papale D, UNITUS Szczypta C, Météo-France

European Commission Fast Track Service Land within the GMES initiative in FP-7

	FP7 Project funded by European Commission Implementing the Land Monitoring Core Service - contributing to GEO, interacting with INSPIRE & SEIS
	50 partners 171 collaborating user organisations (81 directly committed to geoland2)
E	22.4 Mio. € EC grant (FP7) 32.5 Mio.€ in total – 4 years (2008-2012)
2 Top	 11 thematic tasks – 1 coordination office 3 stakeholder platforms (users, science, service providers)

Objectives:

- Land Monitoring Core Service of GMES (LMCS)
- Prepare, validate, demonstrate the pre-operational LMCS (chain & products)
- Propose a functional organisation of the LMCS

Current status

- design and implementation phase
- moving from a "fast track" parallel production towards an "operational" sequential processing chain

Global component

- global ECVs (biophysical variables)
- and assimilation into land surface models
- mainly public institutions

Pan-EU HR component

- 5 layers: sealings, forests, grasslands/crops, wetlands, water bodies
- local component (hot spot areas, e.g. NATURA2000, coastal areas)

User needs

- monitoring: change detection approaches are needed
- that are not covered at the national level

Validation/verification: synergy with national activities

- in situ data for verification
- methods and product benchmarking
- R&D

- 3 Core Mapping Services
 - Euroland (Land Cover)
 - BioPar (Biophysical Products)
 - SATChMo (Seasonal Monitoring)

7 Core Information Services

- Land Carbon
- Global Crop Monitoring
- Natural Resource Monitoring in Africa (NARMA)
- Agri-Environment
- Forest
- Water
- Spatial Planning

- 3 Core Mapping Services
 - Euroland (Land Cover)
 - BioPar (Biophysical Products)
 - SATChMo (Seasonal Monitoring)

7 Core Information Services

- Land Carbon
- Global Crop Monitoring
- Natural Resource Monitoring in Africa (NARMA)
- Agri-Environment
- Forest
- Water
- Spatial Planning

VEGETATION	NRT / Off-line	Spatial Resolution	Spatial coverage	Temporal Resolution	Sensor
LAI, fCover, fAPAR, DMP, NDVI, Phenology	NRT	1 km	Global	10-days	VGT
Time series of vegetation products	Off-line	4 km	Global	10-days	AVHRR + VGT
Burnt areas + seasonality	NRT	1 km	Global	Daily	VGT

WATER	NRT / Off-line	Spatial Resolution	Spatial coverage	Temporal Resolution	Sensor
Water Bodies + seasonality	NRT	1 km - 250 m	Africa	10-days	VGT - MODIS
Soil Moisture + Freeze/Thaw	NRT	25 km	Global	Daily	ASCAT
Time series of soil moisture products	Off-line	25 km	Global	Daily	ERS-1&2 Scat

RADIATION	NRT / Off-line	Spatial Resolution	Spatial coverage	Temporal Resolution	Sensor
Downwelling Shortwave Surface Flux Downwelling Longwave Surface Flux	NRT	~ 5 km	Global	hourly	ΣGEO + AVHRR
Land Surface Temperature	NRT	~ 5 km	Global	hourly, daily, 10-days	ΣGEO + AVHRR
Surface Albedo	NRT	1 km	Global	10-days	VGT
Surface Albedo	NRT	~ 5 km	Global	10-days	ΣGEO + AVHRR

Today: NRT global 10-day from VGT, since 11/2009, at prito

SWI and freeze/thaw

Today: daily global products from ASCAT, 06/2007-04/2010, at

Downwelling Surface Fluxes and LST

• Today: 1y demo from Σ Geo satellites, NRT in test at

Albedo

- Today: NRT global 10-day from VGT, since 11/2009, at prito
- ΣGeo in test at ^Δ
- Burnt areas in Africa
 - Today: demo NRT from SPOT/VGT at vito
- Water bodies in Africa
 - Today: 18-month demo from SPOT/VGT at vito.

geoland

Objectives:

- Natural CO₂ sink strengths vary with weather and climate
- Build a global Land Data Assimilation System (LDAS)
- Product portfolio
 - carbon/water fluxes, analyzed: soil moisture, LAI, biomass, C storage
 - global scale + focus on 3 EU test countries (F, HU, NL)
- Link to meteo/climate services:
 - use the existing infrastructures/expertise (ECMWF, Météo-France, OMSZ, KNMI)
 - interoperability with existing NWP data assimilation systems
 - global and regional components of MACC: "carbon meteorology"

Future operations: link to MACC

- global component of MACC operations NRT 24/7 at ECMWF
- regional component of MACC pre-operations
 - MOCAGE (MF) and CHIMERE (CEA) atm. chemistry models (will) include CO₂

Continuous development: model upgrades, new processes

- Better integration with the carbon science community
- Validation through HR models, benchmarking, in situ data (FLUXNET)

- Greening of NWP land surface models
 - Carbon flux model coded in (MF) SURFEX and in (ECMWF) TESSEL
 - Carbon storage model coded in SURFEX
- Added value of seasonal LAI in NWP models demonstrated
 - MODIS seasonal LAI improves ECMWF forecast of surface air temperature/humidity
 - A first, essential step before operational implementation of CTESSEL
- Atmospheric reanalyses (needed to build climatologies)
 - Needed to drive land surface models and build climatologies
 - ERA-Interim (Global 80km resampled at 0.5°, 1989-now)
 - SAFRAN (HR (8km) gridded meteorological variables over France)
 - Also: METEOSAT-derived incoming solar radiation
- Model benchmarking
 - SURFEX vs. ORCHIDEE ; TESSEL vs. CASA
- Data assimilation feasibility is demonstrated
 - Joint SSM-LAI assimilation
 - Interoperability with existing NWP LDAS
- Validation: ongoing (FLUXNET data, ...)

- Greening of NWP land surface models
 - Carbon flux model coded in (MF) SURFEX and in (ECMWF) TESSEL
 - Carbon storage model coded in SURFEX
- Added value of seasonal LAI in NWP models demonstrated
 - MODIS seasonal LAI improves ECMWF forecast of surface air temperature/humidity
 - A first, essential step before operational implementation of CTESSEL
- Atmospheric reanalyses (needed to build climatologies)
 - Needed to drive land surface models and build climatologies
 - ERA-Interim (Global 80km resampled at 0.5°, 1989-now)
 - SAFRAN (HR (8km) gridded meteorological variables over France)
 - Also: METEOSAT-derived incoming solar radiation
- Model benchmarking
 - SURFEX vs. ORCHIDEE ; TESSEL vs. CASA
- Data assimilation feasibility is demonstrated
 - Joint SSM-LAI assimilation
 - Interoperability with existing NWP LDAS
- Validation: ongoing (FLUXNET data, ...)

Springtime (MAM) sensitivity/impact of LAI seasonality in ECMWF model

geoland

- Greening of NWP land surface models
 - Carbon flux model coded in (MF) SURFEX and in (ECMWF) TESSEL
 - Carbon storage model coded in SURFEX
- Added value of seasonal LAI in NWP models demonstrated
 - MODIS seasonal LAI improves ECMWF forecast of surface air temperature/humidity
 - A first, essential step before operational implementation of CTESSEL
- Atmospheric reanalyses (needed to build climatologies)
 - Needed to drive land surface models and build climatologies
 - ERA-Interim (Global 80km resampled at 0.5°, 1989-now)
 - SAFRAN (HR (8km) gridded meteorological variables over France)
 - Also: METEOSAT-derived incoming solar radiation
- Model benchmarking
 - SURFEX vs. ORCHIDEE ; TESSEL vs. CASA
- Data assimilation feasibility is demonstrated
 - Joint SSM-LAI assimilation
 - Interoperability with existing NWP LDAS
- Validation: ongoing (FLUXNET data, ...)

Szczypta et al. 2010

ERA-I vs. SAFRAN: Precipitation 2001

Szczypta et al. 2010

ERA-I vs. SAFRAN: Precipitation & Incoming Solar Radiation

Incoming Solar Radiation: the METEOSAT LSA-SAF product

- Greening of NWP land surface models
 - Carbon flux model coded in (MF) SURFEX and in (ECMWF) TESSEL
 - Carbon storage model coded in SURFEX
- Added value of seasonal LAI in NWP models demonstrated
 - MODIS seasonal LAI improves ECMWF forecast of surface air temperature/humidity
 - A first, essential step before operational implementation of CTESSEL
- Atmospheric reanalyses (needed to build climatologies)
 - Needed to drive land surface models and build climatologies
 - ERA-Interim (Global 80km resampled at 0.5°, 1989-now)
 - SAFRAN (HR (8km) gridded meteorological variables over France)
 - Also: METEOSAT-derived incoming solar radiation
- Model benchmarking
 - SURFEX vs. ORCHIDEE ; TESSEL vs. CASA
- Data assimilation feasibility is demonstrated
 - Joint SSM-LAI assimilation
 - Interoperability with existing NWP LDAS
- Validation: ongoing (FLUXNET data, ...)

C-TESSEL vs. CASA (July 2004)

SURFEX vs. ORCHIDEE: NEE

- 8km NEE climatology over France (1994-2008)
- Differences are observed, especially in cropland areas. However, the two models are in the range of the natural fluxes provided by the Carboscope project (www.carboscope.eu/?q=flux_map¶m=co2_dgvm)

SURFEX

ORCHIDEE

Lafont et al. 2010

SURFEX vs. ORCHIDEE: GPP

SURFEX vs. ORCHIDEE: NEE

- Greening of NWP land surface models
 - Carbon flux model coded in (MF) SURFEX and in (ECMWF) TESSEL
 - Carbon storage model coded in SURFEX
- Added value of seasonal LAI in NWP models demonstrated
 - MODIS seasonal LAI improves ECMWF forecast of surface air temperature/humidity
 - A first, essential step before operational implementation of CTESSEL
- Atmospheric reanalyses (needed to build climatologies)
 - Needed to drive land surface models and build climatologies
 - ERA-Interim (Global 80km resampled at 0.5°, 1989-now)
 - SAFRAN (HR (8km) gridded meteorological variables over France)
 - Also: METEOSAT-derived incoming solar radiation
- Model benchmarking
 - SURFEX vs. ORCHIDEE ; TESSEL vs. CASA
- Data assimilation feasibility is demonstrated
 - Joint SSM-LAI assimilation
 - Interoperability with existing NWP LDAS
- Validation: ongoing (FLUXNET data, ...)

Satellite data assimilation into land surface models

- Sequential Kalman filtering
- Observations are used when available

Barbu et al. 2010

Assimilation of LAI products: specification of background/observation LAI errors (test over the SMOSREX grassland)

Barbu et al. 2010

2D assimilation of LAI products over France: ISBA model in SURFEX

25

- Greening of NWP land surface models
 - Carbon flux model coded in (MF) SURFEX and in (ECMWF) TESSEL
 - Carbon storage model coded in SURFEX
- Added value of seasonal LAI in NWP models demonstrated
 - MODIS seasonal LAI improves ECMWF forecast of surface air temperature/humidity
 - A first, essential step before operational implementation of CTESSEL
- Atmospheric reanalyses (needed to build climatologies)
 - Needed to drive land surface models and build climatologies
 - ERA-Interim (Global 80km resampled at 0.5°, 1989-now)
 - SAFRAN (HR (8km) gridded meteorological variables over France)
 - Also: METEOSAT-derived incoming solar radiation
- Model benchmarking
 - SURFEX vs. ORCHIDEE ; TESSEL vs. CASA
- Data assimilation feasibility is demonstrated
 - Joint SSM-LAI assimilation
 - Interoperability with existing NWP LDAS
- Validation: ongoing (FLUXNET data, ...)

SURFEX verification using in situ FLUXNET data (forest sites)

Balzarolo et al. 2010

Progress in modelling surface fluxes

- Absorption of direct/diffuse solar radiation
 - New scheme is being implemented in ISBA
- Other issues: AWC, T response, heterogeneity, management,...
- Benchmarking is key
 - ISBA-ORCHIDEE-CTESSEL
 - In situ: flux data and agricultural statistics (e.g. AGRESTE in France)
 - Satellite data (LAI, Ts, ...)

Joint assimilation of LAI and SSM values

- Has potential to improve the simulated CO₂ fluxes
- Interoperability with operational NWP systems is possible
- More work is needed to prescribe observation/model error statistics
 - Difficult for LAI (saturation & definition issues)
 - Long-term in situ observations of soil moisture and reflectances are needed

Positive meteorological response of NWP systems to LAI

 Shows the potential of fully integrated systems (link to MACC and NWP systems)

GEOLAND2 (2008-2012)

- C-TESSEL: global pre-operational implementation
- SURFEX:
 - Test EU countries pre-operational implementation
 - Carbon storage
 - Go pan-European

GIO (2012-2013)

- More room to operations
- Continuous development and validation activities are essential to guaranty the quality / upgrade the service

TbD

- Link to JRC activities (ACP countries, crop monitoring)
- Preparation of the use of future sensors (Sentinels?)

www.gmes-geoland.info

Thank you for your attention!