

Assessing the use of LSA SAF VEGA data for environmental monitoring in Africa: Fractional cover and natural vegetation condition assessment

J.-F. Pekel, E. Bartholomé, M. Clerici Global Environment monitoring Unit, Joint Research Center

in collaboration with F.J. Garcia-Horo

Departtament de Fisica de la Terra, Universitat de Valencia

F. Camacho-de-Coca

Earth Observation Laboratory, Valencia

Toulouse 16 November 2010 – LSA SAF 4th user workshop

Assess the adequacy from a user point of view of the Fraction of Vegetation Cover (FVC) product over Africa for non meteorological applications (agriculture, forestry, environment management, food security,...)

In particular:

- ➤ Identify the post-processing procedures needed for such applications
- Assess the FVC in term of usability for the main biomes by comparison with products from higher spatial resolution instrument but with a lower acquisition frequency (SPOT VEGETATION)

Post-processing

Toulouse 16 November 2010 – LSA SAF 4th user workshop

2

Mosaicking, projection and image format conversion (geoTif)

Plate carrée projection (datum WGS84)

Post-processing

Toulouse 16 November 2010 – LSA SAF 4th user workshop

1-day Composite

Mean Compositing (Average of the valid observations)

10-day Composite

Inter-comparison

Toulouse 16 November 2010 – LSA SAF 4th user workshop

5

Dataset

Product	FVC	FCover (VGT4Africa)	NDVI (VGT4Africa)
Sensor	MSG	SPOT VEGETATION	SPOT VEGETATION
Sensor observation frequency	15 min	~ 1day	~ 1day
Spatial resolution	3X3 km	1X1 km	1X1 km
Product temporal resolution	1 day	10 days	10 days

Distribution of the percentage of observations available (2008, 2009)

Toulouse 16 November 2010 – LSA SAF 4th user workshop

ı

No missing value thanks to the high frequency of MSG

Many missing values Below 25% of observations available for regions of high cloud occurrence

Intensity of the discrepancies

Toulouse 16 November 2010 – LSA SAF 4th user workshop

7

MSG FVC_{Avg} vs VGT Fcover_{Avg} (all Africa, 2008 and 2009)

- > Important discrepancies in term of magnitude
- > Systematic overestimation of the MSG
 FVC vs VGT for low values (i.e. steppe,
 savanna, cropland, shrubland)

JRC Intensity and spatial distribution of the

EUROPEAN COMMISSION discrepancies

 $\frac{1}{2}$ van +20 to +100% +5 to 20% Green + / - 5% Yellow -5 to -20% Magenta -20 to -100%

- > MSG_{Avg} is higher except for some areas in the dense humid forest (because there is no value up to 95% for MSG)
- > MSG_{max} is higher for steppe, and lower for one part of the dense humid forest
- > MSG_{Ampl} is lower except for steppe and savanna
- \gt MSG_{Min} is higher except for steppe, savanna and one part of the dense humid forest

Important discrepancies in term of magnitude for all landcover types!

Temporal consistency

Toulouse 16 November 2010 – LSA SAF 4th user workshop

C

Localization of the 29 sites used for the analysis (From the desert to the dense humid forest)

LandCover	Counrty	Latitude	Longitude
Sand Desert	Algerie	33°23'2.14"N	7°38'34.29"E
Sand Desert (Erg Ubari)	Lybia	24°24'6.43"N	13°29'60.00"E
Steppe	Niger	15° 0'0.00"N	2° 0'0.00"E
Steppe	Niger	15°0′0.00"N	12°0′0.00"E
Savanna	Mali	14°30'0.00"N	5°45′ 0.00′′W
Jachère herbacée	Nigeria	13°14'27.86"N	2°16'36.43"E
Shrub savanna	Niger	12°26'31.07"N	2°36'41.79"E
Tree Savanna	Bostwana	20° 1'45.57"S	21°29'40.89"E
Tree Savanna	Tanzania	2°41'15.00"S	36°32'40.71"E
Okavango	Botswana	18°53'3.61"S	22°27'9.05"E
Niger Delta	Mali	15° 1'4.21"N	4°37'29.95"W
Agro forestry	Benin	9°40'8.78"N	1°33'44.91"E
Oil Palm Plantation	DRC	2°18'26.99"N	20°33'55.59"E
Deciduous Forest	Chad	9°16'52.45"N	15°16'20.40"E
Swamp Forest	DRC	2° 6'41.79"N	20°58'7.50"E
Dense humid forest	DRC	0° 3'3.63"S	21° 6'30.73"E
Dense humid forest	Gabon	1° 59' 43.93"N	13°24'22.50"E
Cropland	Mali	13°55'42.80"N	3°25'10.67"W
Cropland	Ivory Coast	8°10'42.86"N	3°54'6.43"W
Cropland	Nigeria	12°14'27.85"N	14° 0′ 0.00"E
Cropland	Nigeria	13°39'6.40"N	7°44'27.87"E
Cropland	Soudan	12°28'55.71"N	24°18'45.00"E
Cropland	Ethiopia	12°45'42.21"N	37°46'0.62"E
Cropland	Egypt	29°22'30.00"N	30°42'19.29"E
Cropland	Niger	15° 3'12.85"N	7°49'17.13"E
Cropland	Tanzania	3°44'31.02"S	34° 5'35.15"E
Cropland	Nigeria	12°38'55.12"N	12°45'53.81"E
Cropland (Irrigation)	Soudan	14°40'42.84"N	32°59'27.85"E
Cropland (Irrigation)	Swaziland	26° 9'54.64"S	31°55'58.93"E

• MSG FVC follows well the seasonality of the vegetation activity for all biomes

• Both products present similar seasonal and inter-annual variations but show important discrepancies in term of magnitude

• MSG FVC presents a high spatial and temporal continuity over all Africa. At the opposite VGT FCOVER shows periods without observations over regions of high cloud occurrence

• MSG FVC presents a higher temporal stability (smooth profiles) than VGT FCOVER, regardless

the land cover type and the area

Seasonal and inter-annual variations

Toulouse 16 November 2010 – LSA SAF 4th user workshop

10

- The high temporal stability of MSG FVC over the most cloudy areas allows a consistent characterization and a fine monitoring of the phenology of the dense humid forests, what is much more challenging with orbital sensors
- The study of the inter-annual variations vs climatic and hydrologic observations should allow a better understanding of the dynamic of such areas

Possible improvements

Toulouse 16 November 2010 – LSA SAF 4th user workshop

15

- An accuracy assessment should be realized based on ground observations
- Longer time series are required to compute vegetation condition anomalies
 - → Back processing from the first image acquisition is needed
- Provide a flag for waterbodies instead of masking it

- Provide a more user-friendly product by using:
 - the plate carrée projection instead of the geostationary satellite view of the earth
 - a format compatible with all image processing softwares (e.g. geotiff with LZW compression)
 - a full extent for the north African window

• Provide 10D syntheses for the operational monitoring activities, but continue to provide the 1D synthesis for research teams

Conclusion

Toulouse 16 November 2010 – LSA SAF 4th user workshop

The FVC (MSG):

- > follows well the seasonality of the vegetation activity for all African biomes and allows a reliable identification of the main phenological metrics
- > offers a high spatio-temporal stability, without gap even over the most cloudy areas
- > shows large discrepancies with the FCOVER in term of magnitude, mainly for low values
- offers a lower spatial resolution compared to orbital sensors (vgt, meris, modis...).

FVC is a valuable alternative over the most cloudy areas where the quality of the information coming from orbital sensors is poor at such frequency

Perspectives

Toulouse 16 November 2010 – LSA SAF 4th user workshop

The spatio-temporal continuity and consistency of the MSG FVC product and its ability to follow accurately the vegetation activity for all biomes with a daily frequency could be exploited to:

- Provide information on environmental conditions at different administrative scales. For this purpose, the lower spatial resolution of MSG is not a limiting factor, and the quality of the observations should allow to provide consistent information over all African administrative regions.
- Provide data for the monitoring of the vegetation conditions with a high frequency over the most cloudy areas where the orbital sensors can provide only erratic and unreliable measurements at such frequency.