

Assessment of Met Office forecasting models with SEVIRI LSTs

LSA SAF workshop

J. M. Edwards, Toulouse, 16th November

- Motivation
- Forecasting Models
- Diurnal variation of LST under clear skies in "ideal" cases
- Towards improved representation of the roughness sublayer

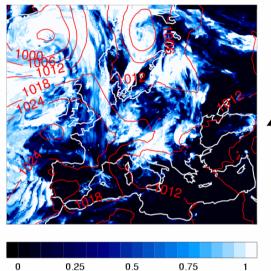
Motivation

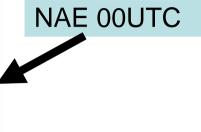
- Near-surface air temperatures (1.5/2 m) are an important output from NWP models and are assimilated.
- LST is more closely linked to the surface flux budget, but can differ substantially from T1.5m
- SEVIRI data offer good temporal resolution and more homogeneous spatial coverage under clear skies
- Can comparison with retrieved LSTs help to improve the representation of near-surface behaviour in the model?

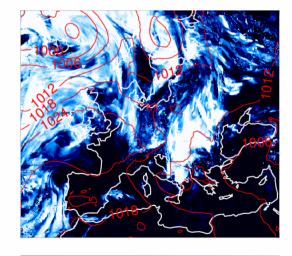
Forecasting Models

- Global Model:
 - Run to T+120
 - Horizontal resolution 40 km (recently \rightarrow 25 km)
 - Vertical resolution: L38 (recently \rightarrow L70)
- North-Atlantic European Model (NAE)
 - Resolution 12 km
 - Run to T+48
 - Covers whole of Europe and much of north Atlantic
 - (To be superseded by higher resolution global model in next few years)

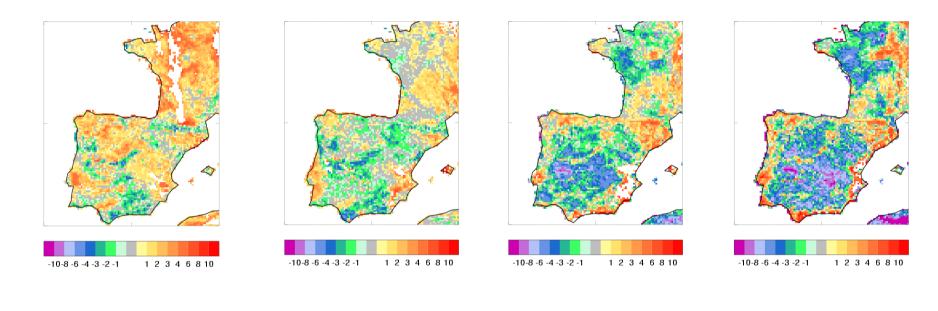
- Met Office Surface Exchange Scheme (MOSES, Cox et al. (1999))
- 4 soil layers top layer 10 cm thick
- Radiative canopy
- 9 Surface tiles
 - Broad-leaved and needle-leaved trees, C3 and C4 grass, bare soil, shrubs, lakes, urban and ice
 - Aggregated in global model
- Surface Exchange treated using Monin-Obukhov theory for fluxes and near-surface profiles

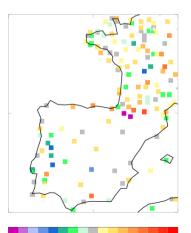



Case studies in the NAE

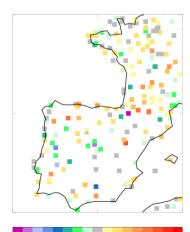

- Select "ideal" cases when model and satellite data show long and extensive clear periods
 - Summer: 22nd July 2008 over south-western Europe
 - Winter: 17th February 2008 over the Low Countries
- Examine diurnal evolution of forecast and retrieved LST in conjunction with synoptic observations of near-surface air temperature

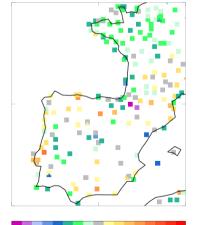
MODIS Composite at 10:50 UTC (NERC Satellite Receiving Station, Dundee University, Scotland)

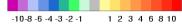

© Crown copyright Met Office

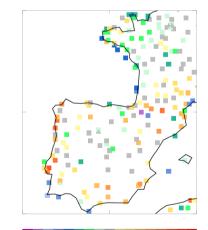

0.25 0.5 0.75

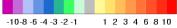
1

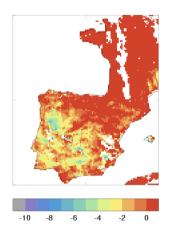

0

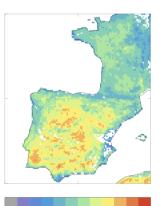


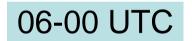


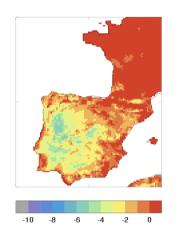


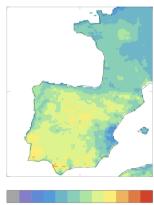








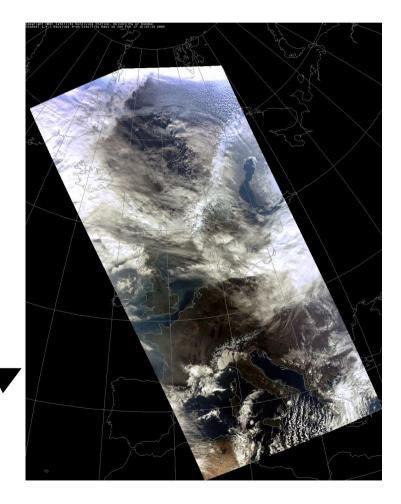




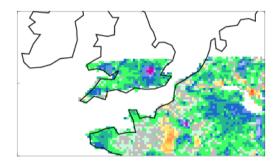
0 8 16 24 32 40

22nd July 2008: Summary

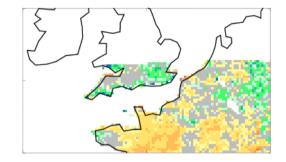
- Model's LST slightly warmer than SEVIRI's at night, but SEVIRI believed to have a slight cold bias (Trigo et al. 2008)
- Model's LST significantly cooler than SEVIRI's at noon – SEVIRI believed to have warm bias during the day, but model's bias is rather larger than this
- Errors in T1.5m much smaller than those in LST
- Similar behaviour on other days in summer

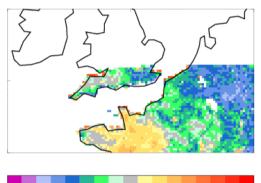


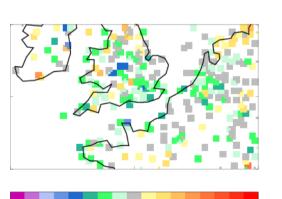
Winter: 17th February 2008

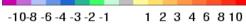

PMSL at 18 UTC

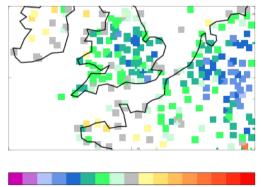
MODIS Composite at 12:14 (NERC Satellite Receiving Centre, Dundee University, Scotland)

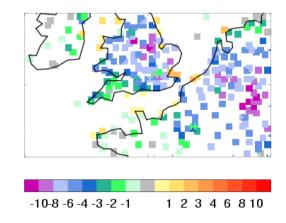



17th February 2008: 12, 16, and 17 UTC


	_	_				
-10-8 -6 -4 -3 -2 -1	1	2	3	4	6	8 10




-10-8 -6 -4 -3 -2 -1	1 2 3 4 6 8 1 0

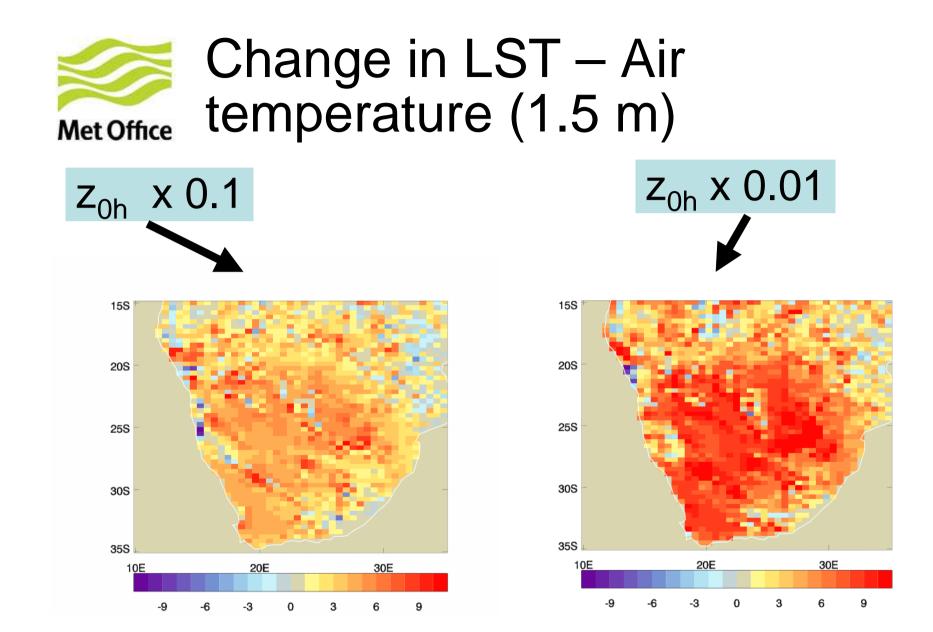

									_						
- '	0-0	8 -	6 -4	4 -:	3 -2	2 -	1	1	2	3	4	6	8	10	

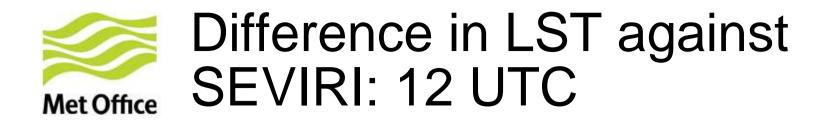
- This weather system was associated with very light winds and clear skies
- Comparison with SEVIRI suggests timing errors in the cooling of the surface through the evening transition in model – initially too slow then too fast
- Errors in T1.5m larger in magnitude late in afternoon – evidence that model underestimates difference between air and surface temperature – decoupling of the surface.

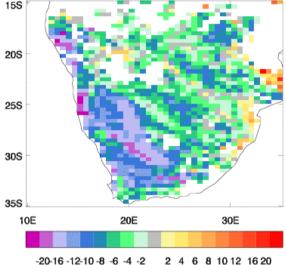
Representing the roughness sublayer

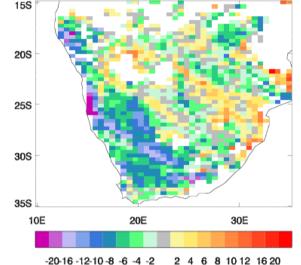
The Roughness Layer: Sensitivity Study

- Importance of surface emissivity in models is increasingly recognised.
- Roughness lengths have a large impact on near surface gradients.


$$\tau = \rho u_*^2$$

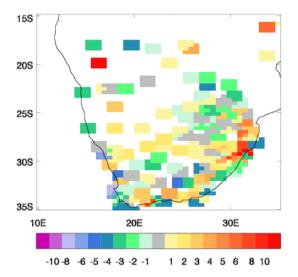

$$H = -\rho c_P u_* \theta_*$$

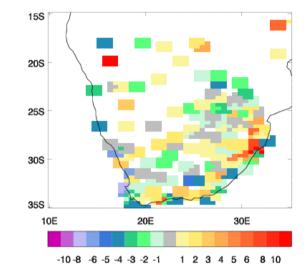

$$\theta(z_r) = \theta(0) + \frac{\theta_*}{k} \left[\log \left(\frac{z_r}{z_{0h}} \right) + \dots \right]$$

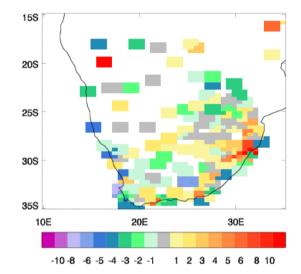


- Thermal roughness lengths are difficult to measure and not always well defined
- Some data suggest z_{0h}/z_{0m} approximately constant, other data suggest dependence on the flow
- Currently, thermal roughness length set equal to 0.1 x z_{0m}
- Generally these values are rather high in comparison with in situ measurements.
- Heterogeneous surfaces particularly difficult

15S


-20-16 -12-10 -8 -6 -4 -2


 $z_{0h} = 0.1 x z_{0m}$


 $z_{0h} = 0.01 \text{ x} z_{0m}$

 $z_{0h} = 0.001 \text{ x} z_{0m}$

z0h = 0.1x z0m: Mean Error = 0.45 K RMS Error = 4.79 K

z0h = 0.01x z0m: Mean Error = 0.36 K RMS Error = 4.66 K

z0h = 0.001x z0m: Mean Error = 0.20 K RMS Error = 4.61 K

- Reduced Thermal Roughness
 - Warmer LST
 - Slightly cooler T1.5
 - Closer agreement with retrieved LSTs and comparable agreement with near-surface air temperatures
- Emphasises need to improve representation of roughness sublayer

- Retrieved LSTs are a useful additional diagnostic of near-surface behaviour in the model.
- Potential role for LST in data assimilation (EnKF approach)
- Utilization of LSTs in forecasting models must be closely linked to improved physical models of the surface layer

Questions and answers