

CINC

Assimilation of low-level SEVIRI IR observations over land

CNRM/GAME

GUEDJ Stephanie KARBOU Fatima RABIER Florence

LSA-SAF User Workshop 2010, Toulouse

INTRODUCTION (1/3)

SEVIRI instrument

- Radiometer onboard METEOSAT-8/-9 (geostationnary)
- Measures « top-of-atmosphere » radiances using 12 channels
- ⇒ Resolution: 1 image/15 min

- 3 km at nadir

Valuable information for NWP : Earth surface, tropospheric humidity, CO2 ...

Channels	Caracteristics	Sensitivity
IR3.9	Windows	Surface
WV6.2	Water Vapor	~ 300 hPa
WV7.3	Water Vapor	~ 500 hPa
IR8.7	Windows	Surface
IR10.8	Windows	Surface
IR12.0	Windows	Surface
IR13.4	CO2	~ 750 hPa

INTRODUCTION (2/3)

Assimilation

SEVIRI in the ALADIN/FRANCE system

- Geographic domain : Europe
- Resolution : H=7.5 km , V=70 levels
- Optimal Interpolation for land surface analyse (LST_{ALADIN})
- 3D-Var assimilation system to produce 4 daily atmospheric analyses
- Observation operator : RTTOV-8

					. '
Channels	Caracteristics	Sensitivity	SEA	LAND	to
IR3.9	Windows	Surface			
WV6.2	Water Vapor	~ 300 hPa	\checkmark	\checkmark	K
WV7.3	Water Vapor	~ 500 hPa	✓	\checkmark	
IR8.7	Windows	Surface	\checkmark		
IR10.8	Windows	Surface	\checkmark		
IR12.0	Windows	Surface	\checkmark		
IR13.4	CO2	~ 750 hPa			
(Montmerle et al., 2007)				-	

Almost not sensitive to the surface

INTRODUCTION (2/3)

SEVIRI in the ALADIN/FRANCE system

- Geographic domain : Europe
- Resolution : H=7.5 km , V=70 levels
- Optimal Interpolation for land surface analyse (LST_{ALADIN})
- 3D-Var assimilation system to produce 4 daily atmospheric analyses
- Observation operator : RTTOV-8

Assimilation

Channels	Caracteristics	Sensitivity	SEA	LAND
IR3.9	Windows	Surface		
WV6.2	Water Vapor	~ 300 hPa	\checkmark	\checkmark
WV7.3	Water Vapor	~ 500 hPa	\checkmark	\checkmark
IR8.7	Windows	Surface	\checkmark	\checkmark
IR10.8	Windows	Surface	\checkmark	\checkmark
IR12.0	Windows	Surface	\checkmark	\checkmark
IR13.4	CO2	~ 750 hPa		\checkmark

Problem : large incertainties about the surface (EMISSIVITY & TEMPERATURE)

LST computation : Method

- ⇒ Direct retrieval of LST from SEVIRI observations following Karbou et al. (2006)
- ⇒ This method has been successfully implemented to improve the assimilation of MW observations over land.
- ⇒ An adaption for IR observations is performed here using the radiative transfer equation ...

 \Rightarrow As input we need a good estimation of the land surface EMISSIVITY $\ ...$

Daily LSE-SAF data have been averaged to produce an atlas for each windows channels <u>Maps of Land Surface Emissivity (LSE) atlases estimated at 3 SEVIRI channels</u>

 \Rightarrow LSE-SAF maps exhibit a spatial and spectral variability

 \Rightarrow The benefit of using LSE-SAF rather than cste emissivity was found positive for RTTOV simulations

LST computation : Method

several configurations were tested to retrieve LST at SEVIRI channels:

 \Rightarrow Ideal situation : LST_{3.9} = LST_{8.7} = LST_{10.8} = LST_{12.0} ... Nevertheless ...

LST computation : Method

several configurations were tested to retrieve LST at SEVIRI channels:

LST computation : Method

several configurations were tested to retrieve LST at SEVIRI channels:

STEP 1 : Evaluation of retrievals vs independent measurements

STEP 2 : select the channel which give the most realistic LST (radiances simulations)

STEP 1 Evaluation of retrievals VS independent measurements

LST computation : Evaluation

LST_{ALADIN} VS LST_{SAF} VS LST_{MODIS} VS LST_{RETRIEVALS}

Day-time and night-time averaged Land Surface Temperature (July 15 to August 15 of 2009) Errorbars represent the STD

- Night-time retrievals are quite coherent
- Large differences in day-time :
- **1.** $LST_{RET} > LST_{ALADIN}$
- 2. LST_{SAF} < LST_{MODIS}
- \Rightarrow difference in viewing geometry

(Trigo et al., 2008)

3. $LST_{3.9}$ can not be used

(sun contamination & inadequate ε)

LST computation : Evaluation

LST_{SAF/MODIS} VS LST_{RETRIEVALS}

<u>Correlations between LST_{SAF} /LST_{MODIS} and LST_{RETRIEVALS} (July 15 to August 15 of 2009)</u>

		LST8.7	LST10.8	LST12.0	N
Day-Time	SAF	0,95	0,95	0,91	957
	MODIS	0,86	0,85	0,82	
Night-Time	SAF	0,96	0,95	0,93	7570
	MODIS	0,78	0,78	0,76	/5/0

• the temporal and spatial agreement seem to be better between LST_{SAF} and LST_{8.7}, LST_{10.8}

- Results from LST_{12.0} seem to be less convincing :
- \Rightarrow lower sensitivity of this channel to the surface compared with IR8.7 and IR10.8

(Averaged atmospheric transmission: 0.71 for channel IR10.8 and 0.6 for channel IR12.0)

LST computation : Evaluation

Summury of STEP 1

• LST_{RETRIEVALS} vs LST_{ALADIN} :

- LST_{RET} have been found to be colder (warmer) during night-time (day-time) than LST_{ALADIN}
- LST_{RETRIEVALS} vs LST_{SAF} : Good spatial and temporal agreement
 - Expected since LSE-SAF is used in both methods (monthly, daily)
 - Only one channel is used for our retrievals
- \Rightarrow LST_{3.9} and LST_{12.0} can not be used
- \Rightarrow Differences between LST_{8.7} and LST_{10.8} retrievals but which one is the more realistic?
- ⇒ Only one channel is needed for the assimilation !
- \Rightarrow STEP 2 ...

STEP 2

select the BEST channel which give the most realistic LST for radiances simulations

2. Impacts of LSTs on RTTOV simulations

Observations vs Simulations: Method

2. Impacts of LSTs on RTTOV simulations

Observations vs Simulations: correlations

Maps of correlations between :

observed Tb and simulated Tb

- \Rightarrow July 15 to July 31 of 2009
- ⇒ Both configurations improve radiances simulations
- ⇒ Best results are obtained when LST is retrieved from channel IR10.8

2. Impacts of LSTs on RTTOV simulations

Observations vs Simulations : bias

SEVIRI data assimilation:

Observations – Simulations | < 1.2K

Using our method, we evaluate the amount of SEVIRI observations that could be potentially assimilated

Rate of increase of SEVIRI observations, potentially assimilated, using 2 configurations (ATLAS, ATLAS+LST) when compared with CONT (July 15 to August 31 of 2009)

	IR8.7	IR12.0	IR13.4
EXPATLAS	+0.99%	+3.14%	+4.98%
EXP _{RET10.8}	+62.88%	+57.58%	+5.17%

Conclusion

The aim of this work was to assimilate as many IR SEVIRI observations over land as possible by reducing the incertainties about the surface (EMISSIVITY & TEMPERATURE)

- LST has been retrieved at several SEVIRI window channel using the radiative transfer equation and LSE from the LSA-SAF
- Evaluation of LST_{RETRIEVALS} :
 - 1. Comparison with other estimates $/ LST_{MODIS} / LST_{SAF} / LST_{ALADIN}$:
 - LST_{RETRIEVALS} have been found to be colder (warmer) during night-time (day-time) than LST_{ALADIN}
 - Good agreement (space, time) has been found between LST_{RETRIEVALS} and LST_{SAF}
 - \Rightarrow LST_{3.9} and LST_{12.0} can not be used

Conclusion

The aim of this work was to assimilate as many IR SEVIRI observations over land as possible by reducing the incertainties about the surface (EMISSIVITY & TEMPERATURE)

- LST has been retrieved at several SEVIRI window channel using the radiative transfer equation and LSE from the LSA-SAF
- Evaluation of LST_{RETRIEVALS} :
 - 1. Comparison with other estimates $/ LST_{MODIS} / LST_{SAF} / LST_{ALADIN}$:
 - LST_{RETRIEVALS} have been found to be colder (warmer) during night-time (day-time) than LST_{ALADIN}
 - Good agreement (space, time) has been found between LST_{RETRIEVALS} and LST_{SAF}
 - \Rightarrow LST_{3.9} and LST_{12.0} can not be used
 - 2. Selection of the best SEVIRI channel for LST :
 - RTTOV to simulate SEVIRI radiances
 - Correlation between Obs and Sim has been improved with regard to CONT configuration
 - \Rightarrow Best results when using LST retrieved from channel IR10.8
 - \Rightarrow Rate of increase of SEVIRI observations, potentially assimilated > 60%

CONCLUSION & Future plans

Conclusion & Future plans

Guedj S., F. Karbou and F. Rabier, Land surface temperature estimation to improve the assimilation of SEVIRI radiances over land, Journal of Geophysical Research, **Submitted**

- Several assimilation experiments have been run using the EXP_{RET10.8} configuration
- ⇒ To finish, some preliminary scores : 18h-forecasted precipitations VS Observations ...

PRECIPITATION SUR 6 HEURES Echeance: 18 H

Thank You

Guedj S., F. Karbou and F. Rabier, Land surface temperature estimation to improve the assimilation of SEVIRI radiances over land, Journal of Geophysical Research, **Submitted**

LST computation : Evaluation

LST_{SAF} vs LST_{MODIS}

<u>Scatterplot of day-time (12h) LST_{SAF} minus LST_{MODIS} as a function of MODIS sun-satellite viewing</u> angle (July 15 to August 15 of 2009)

- The bias is probably due to the difference in viewing geometry between SEVIRI and MODIS (*Trigo et al., 2008*)
- ⇒ Only LST MODIS produced using large **negative** observations angles

The deviation between LST_{SAF} and LST_{MODIS} is reduced from 5K to 1.4K !!

LST computation : Evaluation

LST_{ALADIN} VS LST_{RETRIEVALS}

Mean maps of LST_{10.8} minus LST_{ALADIN} at 0,6,12 and 18h (July 15 to August 15 of 2009)

35 °N

.10 .8

-6 -4 -2 0 2 4 6 8

 $LST_{10.8} > LST_{ALADIN}$

 $LST_{10.8} < LST_{ALADIN}$

LSTRET10.8 - LSTALADIN (K)

- Oh and 18h <u>LST_{10.8}</u> are colder than <u>LST_{ALADIN}</u>
- <u>LST_{10.8}</u> is warmer than <u>LST_{ALADIN}</u> at 12h over the southern part of Europe

Amount of potential assimilated **SEVIRI** observations

Data are accounted \Rightarrow for if :

Tb_{obs} – Tb_{sim} |< 1.2K

a) Channel IR8.7

