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1. Introduction 
The term "urban heat island" (UHI) typically refers to the difference between air temperatures observed in 

urban and rural areas. Voogt and Oke (2003) addressed methodological questions raised previously by Roth et 
al., (1989) and proposed the term "surface urban heat island" (SUHI). Despite complex interactions across 
scales, the physical coupling of surface and atmosphere makes identification of SUHI a logical path to identifying 
mitigations for UHI (Clinton & Gong, 2013). Using remote sensing to study SUHI can improve understanding of 
the spatial–temporal variability of physical processes which influence the long-term urban climate (Hu et al., 
2013). 

There have been significant efforts put into understanding the land surface temperature (LST) patterns over 
urban and rural areas (e.g. Carlson et al. 2000; Stathopoulou et al ., 2007; Walawender et al., 2014; Zheng et al., 
2014; Mohan et al., 2015). One of the most frequently investigated relationships that describe anthropogenic 
modification of natural surfaces is the relationship between impervious surface area (ISA) and surface 
temperature (e.g. Dousset et al., 2003; Yuan et al., 2007). However, Li et al., 2014 documented that LST is 
affected not only by land cover pattern but also by other anthropogenic forces. Thus, the linkage between 
anthropogenic heat flux (AHF) and surface temperature has been explored (Kato et al., 2005; Zhou et al., 2011). 
Also, indirectly described human activity or population characteristics and LST has also been extensively studied, 
e.g. population density (Buyantuyev et al., 2010; Mallick et al., 2012); socioeconomic patterns (Buyantuyev et al., 
2010); human settlement characteristics including household income or population race (Jenerette et al., 2007). 
Remotely sensed night lights is another interesting parameter that has been used to spatially allocate many 
aspects of human activity (Gallo et al., 1995; Elvidge et al., 1997; Yang et al., 2014). Hence, since relationship 
between ISA, population density, night-time lights and surface temperature or human activity is well established, 
it is safe to anticipate that those variables can be used as spatial proxy of urban settlements, and therefore as a 
clue to delineate between urban and rural areas. However, little is known about the impact of temporal 
aggregation of LST data on the relationship between LST data and parameters describing human activity or 
surface properties. Filling this gap is one of the objectives of this study. 

SUHI is a phenomenon not only of high spatial variability, but also of high temporal variability (Weng et al., 
2014). Studies that investigate urban LST observed in different seasons frequently utilize a single satellite 
measurement and do not incorporate temporal composites (e.g. Sharma et al., 2014). Since surface temperature 
is influenced by accident synoptic conditions (e.g. wind, humidity), such approach may lead to discrepancies. In 
order to avoid such uncertainties it is advisable to use temporal composites. Analysis of long-term land surface 
temperature data composites is important in many aspects of urban climatology, i.e. seasonal and annual LST 
variability investigations, development of UHI mitigation strategies or composition of mean climatologies for 
modelling purposes. Composite data directly increase the clear sky coverage across urban and rural regions, 
which are beneficial for SUHI studies; however, many papers do not consider the possible errors caused by 
composite processes (Hu et al., 2013). Although previous investigations of MODIS multi-temporal urban LST 
patterns do account for cloud contamination (e.g. Cui et al., 2012; Hu et al., 2013; Quan et al., 2014), they fully or 
partially neglect spatial pattern of LST retrieval errors which may influence local and overall quality of resulting 
LST patterns and calculated SUHI intensities. 

The primary objective of this paper is to estimate a mean intensity of SUHI phenomenon in Warsaw, Poland in 
the transitional seasons (Spring and Autumn) for the last 15 years by investigating the influence of temporal 
aggregation of LST data on several indicators of SUHI (Schwarz et al., 2011). According to the nature of remote 
sensing observations and typical cloudiness conditions in the target city, the idea of the approach was to promote 
those observations that represent the highest quality of LST retrieval. This was achieved by utilizing a weighted 
arithmetic mean, which weights were based on MODIS Quality Control (QC) metadata (Wan, 2006). 

2. Study area 
City of Warsaw has an area of 517.24 km2. Population is about 1 700 000 inhabitants, but in the agglomeration 

it exceeds 2 500 000 persons. The average population density is 4223 persons/km2. Warsaw is located in the 
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central part of Poland, at 78 to 121 m above sea level. Through Warsaw flows the biggest river in Poland, Vistula. 
According to the Climatological Atlas of Poland, the average annual number of cloudy days (more than 7 
octanes) in the years 1971-2000 is between 140 and 150 (in winter 50-60 days), while the average annual 
number of cloudless days (less than 2 octanes) is between 30 and 40 (in winter 5 to 10 days). Since Warsaw has 
a transitional climate, synoptic conditions may be very different from year to year. In the north of Warsaw lies 
Zalew Zegrzyński Lake. Because of its proximity to the Warsaw agglomeration (about 10 km) and size (33 km2) it 
was used as a reference to calculate one of the SUHI intensity indicators ("urban mean - water"). 

3. Data and methodology 
Since transitional seasons (Spring and Autumn) in Poland, typically, have high variability of synoptic conditions, 

we utilized all available MODIS Terra MOD11A2 (V5) products that represent an average LST for 8 days from 
year 2000 to 2014. For each case analysed we chose 4 consecutive MOD11A2 products that corresponded with 
the Spring and Autumn Equinox (approx. 2 products before and 2 after). To sum up, there were 120 mean rasters 
for Spring case (day + night) and 120 for Autumn case (day + night), which cumulatively represent 1920 satellite 
acquisitions. MODIS Aqua observations were neglected due to different time of satellite overpass and 
unavailability of observations in the period 2000 - 2002. Moreover, in order to account for cloud contamination, 
we neglected those rasters with the number of available LST pixel lower than 50%. Also, unreliable LST values 
(lower than -15°C and more than 25°C) where neglected. 

Night-time lights were collected by Suomi National Polar-orbiting Partnership Visible Infrared Imaging 
Radiometer Suite (Suomi NPP VIIRS). The "DNB Cloud Free Composites" product that was utilized has about 
330 m spatial resolution and 14 bit radiometric resolution. The NPP VIIRS is a superior instrument to Defense 
Meteorological Satellite Program Operational Linescan System (DMSP OLI) since it has better technical 
characteristics (Elvidge et al., 2013). Particularly, NPP VIIRS product it not saturated over urban areas, while 
DMSP, due to low radiometric resolution (6 bit) is. Population density as a homogeneous shapefile was obtained 
from Geostat, (EOSTAT_Grid_POP_1K_2011_V1_0). Impervious surface area global raster was obtained from 
NOAA (Elvidge et al., 2007). Both rasters have resolution of 1 km. 

3.1 Estimation of 15-year mean LST rasters 

 Each MOD11A2 product consist of 12 Scientific Data Sets (SDS). In this study we utilized SDSs that contained 
LST values, Quality Control and number of clear sky days in an 8-day period. The idea for the estimation of mean 
LST in the 15 year period was to promote those pixels that had the highest quality. Therefore, for each pixel that 
was taken into account, we applied weights based on values of LST retrieval errors (5 thresholds - Table 1) and 
number of clear-sky days (synonym of number of obtained observations during an 8 day period). 
 

Description of LST retrieval errors Weight value 
good quality, not necessary to examine more detailed QC 5 

average LST error <= 1K 4 
average LST error <= 2K 3 
average LST error <= 3K 2 
average LST error > 3K 1 

Table 1 Assignment of weight values based on MOD11A2 product Quality Control (MODIS User Guide - Wan, 
2006). 

 Each pixel on each raster had appropriate weights applied and a final 15-year averaged LST image was built 
by means of weighted arithmetic mean. Weights were accumulated over all 8-day mean rasters from years 2000-
2014 that were taken into account (60 per case). In order to broaden the analyses, we derived 3 types of final 
averaged rasters. Each was built by weighted arithmetic mean, where weights were of 3 different types. First type 
was based on LST retrieval errors, second was based on degree of cloudiness (number of clear-sky days), third 
was based on the sum of weights in first and second cases combined. Since the idea for estimating the final 15-
year mean LST values was to promote pixels with the highest quality, we applied 5 exponential power to each 
weight. Consequently, the higher the exponential power applied, the stronger the promotion of highest quality 
pixels was. It was assumed that LST retrieval error is a final indicator of pixel quality and additional accounting for 
emissivity errors was neglected (Wan, 2006). 

3.2 SUHI indicators 

 In order to quantify the impact of temporal aggregation and to estimate a mean SUHI intensity for the last 15 
years in the city of Warsaw, we calculated several SUHI indicators that were used by various authors over those 
years. According to the remarks given by Schwarz et al., 2011, we used several indicators in parallel. Table 2 
shows the list of indicators that were used, with a brief definition. For full descriptions please refer to Schwarz et 
al., 2011 and original papers. However, according to the specifics of this paper, some of the indicators had a 
slightly different definition or name than in the original references. 

 Name Brief definition 
1. Standard Deviation Standard deviation of LST values within city's administrative borders 
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2. Magnitude Maximal LST – mean LST (within city borders) 
3. Range Maximal LST – lowest LST (within city borders) 
4. Urban mean – other Mean LST (within city borders) – mean LST (areas outside borders within a buffer) 
5. Urban mean – water Mean LST (within city borders) – LST of Zalew Zegrzyński Lake 
6. Urban mean – agriculture Mean LST (within city borders) – LST of cropland pixel 
7. Inside urban – inside rural within city borders: mean LST of artificial areas – mean LST of natural areas 

8. Urban core – rural ring mean LST of artificial areas within city borders – mean temperature in ring of pixels 
outside city 

9. Urban core – deep forest mean LST of artificial areas within city borders – pixel covered with dense forest 
(Kampinos National Forest) 

Table 2 SUHI indicators that were utilized. 

4. Results 
4.1 Spatial distribution of LST in different seasons 

 The aim of the study is to estimate an average SUHI intensity for the last 15 years. SUHI intensities are 
expressed as a number; however, according to the nature of temporal aggregation and the fact that surface 
temperature has a specific pattern in urban areas, it is advisable to initiate analyses with investigation of spatial 
distribution of LST. Such approach helps to avoid errors in the analyses. In order to achieve this goal, it was 
critical to select an appropriate way of LST temporal composites construction. We chose a combination of LST 
retrieval errors and clear-sky days weights for further analyses since it gave the most realistic spatial distribution 
pattern of urban LST and it fully exploits MODIS Quality Control metadata. 
 Figure 1 shows spatial distribution on 15-year mean rasters obtained for each case: Spring day, Spring night, 
Autumn day and Autumn night. Images were constructed using a sum of weights based on number of clear-sky 
days and LST retrieval errors. In each case there is the same trend observed - growing exponential power 
increases LST. Moreover, growing exponential power impacts the spatial range of elevated LST in Autumn day 
case and Spring night and day case - the bigger the power, the smaller the spatial range. 
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Fig.1 Spatial distribution of temporarily composited LST in different seasons. 

 On the other hand, growing exponential power has much less influence on spatial range of elevated LST in 
Autumn night case. The daytime and night-time cases show different spatial pattern of LST. In the night-time 
cases there is no river Vistula visible in the middle of the city, while during the daytime cases there is. This is 
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consistent with typical diurnal behaviour of LST in Warsaw (Gawuc, 2014). On the whole, in each case LST 
pattern seems plausible. 

4.2 SUHI intensities 

 In order to underline the influence of MODIS Quality Control on temporal composite of LST, we calculated 
SUHI indicators values on 15-year mean rasters that were constructed by two types of arithmetic mean - simple 
(hereafter named "first" type of temporal aggregation composition process) and weighted arithmetic mean 
(hereafter named "second"). First type does not take into account MODIS QC and second does. Table 3 shows 
SUHI indicator values calculated on rasters that were constructed by means of a simple mean. 

   [°C] Autumn day Autumn night Spring day Spring night 
1. Standard Deviation 0,89 0,97 1,15 0,83 
2. Magnitude 1,44 1,88 3,55 1,9 
3. Range 4,02 4,56 6,75 4,51 
4. Urban mean - other 0,81 1,49 1,5 1,15 
5. Urban mean - water 4,22 -1,71 5,93 -0,02 
6. Urban mean - agriculture -0,03 1,4 1,64 1,05 
7. Inside urban – inside rural 1,04 1,28 1,57 1,01 
8. Urban core – rural ring 1,06 2,17 1,87 1,63 
9. Urban core – deep forest 3,04 1,45 4,21 0,6 

Table 3 Indicator values calculated on rasters that were constructed by means of a simple mean. 

 
Fig. 2 SUHI indicator values - differences between two types of temporal composition. 

 In each case observed there is a clear trend visible – the higher the exponential power applied to weights, the 
bigger the difference between two types of compositions (Fig. 2). This clearly corresponds to the strength of 
promotion of pixels with best quality. Each indicator in Autumn cases calculated by means of the raster 
processed with the second type of temporal aggregation has a higher or almost the same value than after 
processing with the first type. This means that growing exponential power applied to weights during composition 
process causes higher contrasts in LST observed in urban and rural areas and directly increases SUHI intensity. 
The only exception is indicator "urban mean - agriculture", which is inversely proportional to growing exponential 
power. In Spring cases most indicators calculated on rasters built by two temporal aggregation processes have 
lower values after second type of composition, with the exception of indicators "range" and "magnitude" in night-
time case and "urban mean - water" and "urban mean - agriculture" in daytime case. It is worth mentioning that 
the highest differences between two types of temporal composition processes are observed in Spring cases, 
which corresponds to high variability of synoptic conditions that can be observed throughout the 15 year period in 
this season and consequent low quality of satellite observations. 
 Summarizing, analysis of Table 3 and Fig. 2 leads to the conclusion that temporal composition process with 
regard to MODIS QC has a clear impact on calculated intensity of SUHI phenomena. In Autumn cases it mostly 
increases and in Spring cases it decreases SUHI intensity. However, some of the indicators show different 
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relationship with temporal aggregation processes, what seems to be consistent with findings of Schwarz et al. 
2011, who documented rather low correlation between different SUHI indicators. 

4.3 Relationship between aggregated LST and night-time lights, population density and ISA 

 Physical parameters that describe human activity or surface properties have an apparent pattern in urban 
areas. Typically, highest population density or night-time lights intensity and ISA values are observed in the city 
centres, which is an analogy with surface temperature. Therefore, variability of correlation throughout exponential 
powers reveals partially the impact of temporal aggregation process on LST pattern. 

 
Fig. 3 Correlation coefficient variability across exponential power applied to weights. 

 Fig. 3 documents the impact of temporal aggregation of LST data on the relationship with night-time lights, 
population density and impervious surface areas. In each case the correlation coefficient was positive. In Autumn 
cases differences between first and second type of aggregation process (see Section 4.3) are not as apparent as 
in Spring cases. Moreover, in Autumn cases temporal composition process increases and in Spring cases 
temporal composition process decreases the correlation coefficient for each parameter. Horizontal lines 
represent 15-year LST composite built without accounting for MODIS QC. Highest correlation coefficient is noted 
between LST and ISA, second highest between LST and night-time lights and lowest between LST and 
population density. After applying MODIS QC metadata in the temporal aggregation process, in Spring night case 
the highest correlation coefficient was noted between LST and night-time lights. 

5. Conclusions 

 The goal of the presented study was to estimate a mean SUHI intensity for a Central-European agglomeration 
(Warsaw) in transitional seasons (Spring and Autumn). To achieve this goal we analysed the impact of temporal 
aggregation of LST data on the values of SUHI intensity indicators. The idea of the approach was based on an 
assumption that according to the nature of thermal remote sensing observations and synoptic conditions over the 
study area, it can be justified to promote pixels with highest quality. Therefore, we applied a weighted arithmetic 
mean to calculate the final rasters that represent mean LST values for the period 2000-2014. Weights were 
accumulated over 15 years and were based on MODIS MOD11A2 Quality Control metadata. We included 3 
types of weights, the first based solely on the number of clear-sky days (8 thresholds), the second based on LST 
retrieval errors (5 thresholds), and the third type a combination of the first and the second type of weights. 
Moreover, to show the impact of the strength of the promotion of pixels with best quality, we applied 5 
exponential powers to weights during the composition process. Also, the differences between 15-year mean 
rasters built without accounting for MODIS QC metadata and 15-year mean rasters that account for MODIS QC, 
were discussed. 
 In Section 4.1 we analysed a spatial distribution of the 15-year mean LST with 5 different exponential powers 
applied to 3 different types of weights for Spring day cases. We conclude that the combination of weights based 
on LST retrieval errors and number of clear-sky days gives the most realistic LST pattern. Therefore, this type of 
composition process was chosen for further analyses. Hence, we analysed a spatial distribution of temporally 
aggregated LST for day and night, Spring and Autumn cases. We observed that temporal aggregation process 
does influence the values and spatial range of elevated urban LST. 
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 In Section 4.2 we analysed SUHI intensities in terms of their variability with growing exponential power applied 
to weights during composition process, as well as differences between temporal composition with and without 
accounting for MODIS QC. The most important observation is that the SUHI phenomenon occurs in each case 
analysed. We noted that the temporal aggregation process has a weaker influence on calculated SUHI intensity 
in Autumn cases than in Spring cases. Moreover, this influence in Autumn cases increases the observed SUHI 
intensity, while in Spring cases it decreases or increases it, depending on indicator and exponential power. The 
inclusion of MODIS QC metadata in composition process has the strongest influence on calculated SUHI 
intensity in Spring night case, since in this case most indicators have bigger differences than indicators calculated 
on 15-year mean raster built without accounting for MODIS QC. However, we observed that behaviour of SUHI 
indicators varies. This conclusion is consistent with the findings of Schwarz et al. 2011, where it is remarked that 
SUHI indicators reveal low correlations between each other. 
 The conclusion than comes out of analysis of the impact of temporal aggregation of LST data on the 
relationship between LST and night-time lights, population density and ISA (Section 4.3) is the following. The 
weakest relationship is observed between LST and population density, while the highest between LST and ISA or 
night-time lights. Moreover, it is safe to remark that in the Autumn cases, temporal composition process with 
accounting for MODIS QC brings out the urban LST pattern more apparently (increases correlation) than without 
accounting for QC metadata. In Spring cases temporal aggregation process suppresses the urban LST pattern 
(decreases correlation). 
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