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1. Introduction 

Due to rapid urbanization and depletion of natural resources, high-density urban living to make better use of 
natural resources is an inevitable growing trend. However, closely packed high-rise buildings often result in 
stagnant airflow in high-density urban areas, which has been associated with increased exposure to ambient air 
pollution and outdoor thermal discomfort. From the perspective of outdoor thermal comfort, Cheng et al. (2011) 
indicated that a decrease in wind speed from 1.0 to 0.3 meter/second is equivalent to a 1.9°C increase in ambient 
temperature and a wind speed of about 1.6 m/s is required to achieve neutral thermal sensation in subtropical 
areas during summer. Decreasing wind speed has also been shown to lower the convective effect of ambient air 
pollutant dispersion (Tominaga and Stathopoulos, 2011). Therefore, improvement of the wind environment in 
urban areas using wind flow and dispersion information is among the fundamental tasks of high-density urban 
planning.  

In this study, we aim to develop a fine-scale morphological modelling-mapping approach to provide 
pedestrian-level wind information between buildings, which could enable more efficient decision-making in urban 
planning and design. This approach not only could avoid the high simulation costs of Computational Fluid 
Dynamics (CFD) (Tominaga et al., 2008), it could also increase the resolution of the wind environment map to 
several meters, compared with the hundred meters resolution in the conventional morphological models 
(Grimmond and Oke, 1999; Ng, et al., 2011). As a result, our new approach could bridge the gap between the current 
modelling methods and requirements of practical planning and design.  
 
2. Development of a morphological model for fine-scale wind estimation 

In order to address the limitations of both CFD simulation and conventional morphological models, we 
developed a refined morphological model that provides high spatial resolution wind information at the pedestrian 
level between buildings without increasing the computational cost. The modelling was based on developing 
approximations to avoid directly calculating the flow between roughness elements. As Belcher et al. (2003) did, we 
assumed the flows in a fully developed atmospheric boundary layer, with wind components, U(z) (u, 0,0), in urban 
areas with annual wind frequency (pi) for 16 wind directions (i=1,…,16).  

First, we related the pedestrian-level wind speed to building frontal area density (λf) over a certain height 
range (∆z) as averaged over a high density area, based on the understanding of momentum transfer and drag 
force balance in the canopy layer (Bentham and Britter, 2003; Coceal and Belcher, 2004). MacDonald et al. (1998) 
indicated that the λ୤

∗ [frontal area density above the displacement height (zd)] can better estimate the wind profile 
than conventional λf; on the other hand, the near-ground wind speed depends on the λ୤

ᇱ (frontal area density 
below zd), instead of λ୤

∗. Ng et al. (2011) defined the podium layer (0m -15m) in Hong Kong due to the podium 
morphological characteristic, and considered that the air is impeded at the podium layer as much as if it is under 
zd. The wind velocity ratio (VR) is well related to λ୤

ᇱ (λf(0–15m): frontal area density in the podium layer), rather than 
λ୤
∗  (λf(15–60m): frontal area density in the building layer). Since we chose Hong Kong as the target city, λ୤

ᇱ  
calculated from 0m to 15m is applied in this study.  

Second, we adjusted the morphological index λf’ using the distance from roughness elements to target points 
to estimate the fine-scale wind speed between roughness elements. Here, we illustrate how air flows through 
urban areas by describing the momentum transfer and drag force balance in a moving air parcel. The air parcel is 
impeded by the drag force of roughness elements, and is accelerated by the downward transfer of horizontal 
momentum. It means that the parcel will stop without vertical transfer of horizontal momentum (Belcher et al., 
2003). The speed of the air parcel can be recovered after traveling further away from the roughness element. It 
indicates that, when the wind speed at test points is affected by the surrounding area, the effects of individual 
roughness elements are different, given that the distances from the target point to individual roughness elements 
are different. Consequently, we create a distance index (L) and calculated the point-specific frontal area density 
(f-point) by adjusting λf’ using the distance index (L). This adjustment of calculation indicates that f-point is not only 
spatially and annually averaged but also point-specific. As shown in Figure 1, frontal area pixels in ∆z (0m -15m)  
(A∆z,i), weighted by the distance coefficient (l) and annual wind frequency (pi ) in the ith wind direction, were added 
up and normalized by the scanned area to calculate the point-specific frontal area density (f-point) as: 
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where A∆z,x,y is the wind frequency-weighted frontal area at the pixel (x, y), in which x and y are the 

coordinates, ∆z is from 0-15 m (Ng et al., 2011), and l୶,୷ is the distance coefficient. The A୲ is the scanned area 
and r is the scan radius (200 m) (Ng et al., 2011), as shown in Figure 1. Belcher et al. (2003) indicated that the 
increase of the mean wind speed is not linear when the air parcel moves further away from the roughness 
elements. Therefore, an exponent c, 2.0, is used to adjust l୶,୷. As indicated in Table 1, the modelling results with 
the exponent c=2.0 fit the experimental data better than the one with the exponent c=1.0. 

 
Figure 1 Schematic illustration of f-point calculation. Test point, scanned area (ܣ௧), radius (r), distance (L), and 
frontal area units (red pixels) at the boundaries of buildings are presented. 
 
3. Model testing 

We correlated the wind tunnel data with the point-specific index (f-point) to test the model performance. 
First, we obtained the overall wind VR measured in a wind tunnel experiment conducted by the Hong Kong 
Planning Department (Hong Kong Planning Department, 2005). As shown in Figure 2, the experiment was carried 
out at three locations, with two zones (i.e., Zone a and Zone b) per location and evenly distributed test points 
within each zone to measure the overall wind VR. The overall wind VR quantitatively describes the annually 
averaged wind permeability in Technical Circular No., 1/06, the Air Ventilation Assessment (AVA) at Hong Kong 
(Hong Kong Development Bureau, 2006), and it was defined as: 

ܸܴ ൌ 	∑ ௜ܲ
ଵ଺
௜ୀଵ ∙ ܸܴହ଴଴,௜                                  (5) 

where ܸܴହ଴଴,௜ represents the directional wind velocity ratio between wind speeds at the pedestrian level and 500 
m above the ground (reference height). Second, we calculated the corresponding values of f-point at test points 
using ArcGIS, in which the pixel values of A∆z,x,y and ݈௫,௬ were calculated using the building geometry data from 
Hong Kong Planning Department, and annual wind frequency data (Pi) was obtained from MM5/CALMET system 
(Yim et al., 2007). The f-point values were then entered into a linear regression analysis to predict the 
corresponding annually averaged wind VR. 
 

 
Figure 2 Three test locations. Every test location includes two zones (Zone a and Zone b) in which the test points 
were evenly distributed to collect the wind data.   
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Figure 3 Linear regression analysis at Mong Kok and Sheung Wan. 
 

Results of the regression analyses are partly shown in Figures 3 and summarized in Table 1. In general, 
the point-specific ߣ௙_௣௢௜௡௧ is negatively associated with wind VR. In other words, the closer surrounding roughness 
elements to the test point, the more the air flow would be impeded, and the slower the pedestrian-level wind speed 
at a particular point. The statistical analysis indicates an acceptable modelling-mapping method from the planning 
and design perspective. The urban planners and architects can use ߣ௙_௣௢௜௡௧ to reasonably predict the VR. The 
values of R2 ranged from 0.40 to 0.62. The 95% confidence intervals (CI) of the slopes of the regression model for 
irregular and regular street grid are -1.66±0.14 and -3.83±0.56 respectively. The standard error (SE) of predicted 
VR at test zones ranged from 0.03 to 0.05. The values of CI and SE are one order of magnitude smaller than the 
corresponding predicted values. Assuming that the annually averaged wind speed at the reference height (500 m 
above the ground) at test locations is 6.67 m/s, we also calculated that the SE of predicted pedestrian-level wind 
speed varies from 0.20 to 0.33 m/s. 

Figure 3 and Table 1 show that the slopes between street grids (regular versus irregular) differ. The slope 
for Mong Kok (-3.9) is significantly different from those for Sheung Wan and Causeway Bay (-1.7). The incoming 
air in areas with regular street grids might encounter strong resistance, and the wind speed is particularly small at 
streets that are perpendicular to the wind direction, given that air flow at those streets is only driven by the limited 
horizontal momentum transferred from the street that is aligned with the wind direction. In contrast, incoming air 
can easily flow around a building block in areas with irregular street grids, driven by the horizontal momentum. 
Thus, the same frontal area can impede more air flow in regular street grid than in irregular street grid, which 
explains the different coefficients and intercepts in urban areas with different street grids in Table 1. The 
regression analysis results also show that the slopes for different test zones within the same street grid are similar. 
Therefore, it is possible to develop a general regression equation to predict VR by using f-point for each type of 
street grids as shown below: 

i) for districts with regular street grids (main streets perpendicular with each other) 
ܸܴ ൌ െ3.9ߣ୤_୮୭୧୬୲ ൅ 0.4                                             (6) 

ii) for districts with irregular street grids 
ܸܴ ൌ െ1.7ߣ୤_୮୭୧୬୲ ൅ 0.3                                             (7) 

It should be mentioned that the range of f-point values also depends on the street grid in the neighborhood. 
In the regular street grid (e.g., Mong Kok), the f-point range tends to be small (~0.03), especially with the similar 
block size and street width. In contrast, the f-point range in the irregular street grid (e.g., Sheung Wan and 
Causeway Bay) tends to be much larger (~0.08). This has significant implications in the planning and design 
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practice. The sizes of assessment areas should be chosen based on the f-point range for the corresponding street 
grid types. Otherwise, with too small range of the f-point in the chosen assessment area, the modelling result would 
be invalid. 

 
Table 1 Slope Coefficient, Intercept, and Standard Error in regression equations for different districts. The result of 
a sensitivity test of exponent c was also presented.  

Districts Zones 
R2 

(exponent c=1.0) 
R2

(exponent c=2.0) 
Slope 

Coefficient 
Intercept 

SE of 
predicted VR 

SE of predicted 
Up (m/s) 

Mong Kok 
(Grid plan) 

 

Zone a 0.52 0.56 -3.9 0.4 0.03 0.20 

Zone b 0.14 0.42 -3.8 0.4 0.04 0.27 

Sheung Wan 
(Irregular street 

grid) 

Zone a 0.35 0.49 -1.7 0.3 0.05 0.33 

Zone b 0.57 0.62 -1.7 0.3 0.04 0.27 

Causeway Bay 
(Irregular street 

grid) 

Zone a 0.47 0.49 -1.9 0.3 0.03 0.20 

Zone b 0.40 0.40 -1.6 0.3 0.04 0.27 

Note: In the calculation of SE of predicted pedestrian level wind speed (Up), the annually averaged wind speed at 
the reference height (500 m above the ground) at study areas is equal to 6.67 m/s, which is from wind tunnel 
experiment.  
 
4. Mapping the wind environment  

Based on the above statistical analysis, we first used a self-developed program, which is embedded as a 
Visual Basic for Applications (VBA) script in the ArcGIS System, to calculate f-point using equations 1 - 4 on a pixel 
by pixel (1 m × 1 m) basis of all non-built-up locations in the target area. Taking Sheung Wan and Central, two 
metropolitan areas in Hong Kong, as an example, the results are shown in Figure 4.  

 
Figure 4 Map of f-point for Sheung Wan and Central.     

 
Figure 5 Pedestrian-level wind speed map, which was classified as Class 1 (Poor, <0.6 m/s), Class 2 (Low, 0.6 
m/s -1.0 m/s), Class 3 (Satisfactory, 1.0–1.3 m/s), and Class 4 (Good, > 1.3 m/s). 
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Second, we extended the  f-point map to the overall wind VR map by using regression equations 6 or 7, 
and calculated the pedestrian-level wind speed by multiplying VR by U500 (annually averaged wind speed) at the 
reference height, e.g. 6.67m/s at Sheung Wan and Central. Based on the physiological equivalent temperature 
(PET) (Cheng et al., 2011), the neighborhood wind speed field can be classified as Class 1 (Poor, <0.6 m/s), Class 
2 (Low, 0.6–1.0 m/s), Class 3 (Satisfactory, 1.0 m/s – 1.3 m/s) and Class 4 (Good, >1.3 m/s). The pedestrian-level 
wind speed map with the classification was shown in Figure 5. 

 
5. Implementation 

The new modelling and mapping method, with its low computational cost, accuracy and high resolution 
modelling results, is considered as a practical tool for the urban planning in the neighborhood scale. After 
correlating the f-point with local wind data once (e.g. the wind data from the wind tunnel, CFD or field 
measurements), the new modelling–mapping approach enables urban planners and designers to model and 
evaluate the wind environment in the project by themselves, without using individual wind tunnel or CFD 
simulation. In this section, we illustrate the application of the new modelling-mapping approach in the air 
ventilation assessment (AVA) of Hong Kong. This new modelling-mapping approach can be applied in both the 
expert evaluation and initial study in AVA to provide a general pattern of pedestrian-level wind environment 
without CFD simulation or wind tunnel experiment. Modelling results can be reported as the wind velocity ratio VR 
or even directly the pedestrian-level wind speed, if the local wind speed at the reference height is available. 
Compared to the few hours or days of processing time needed for our proposed modelling method, it would take 
the CFD simulation or wind tunnel experiment several months to obtain a similar time averaged result (e.g., the 
annually-averaged results in Figure 5).  

 
Figure 6 Evaluation of the effect of the new building on the neighborhood wind environment. (a) original scenario; 
(b) scenario with the new building. 

  First, Figure 5 quantitatively presents the wind environment at the target area. Specifically, 
pedestrian-level wind speed is the lowest in the deep urban areas (purple area, Class 1: <0.6 m/s) and 
significantly increases toward the coastal areas (dark green area, Class 4: >1.3 m/s). Based on Figure 5, urban 
planning and design strategies can be tailored to address specific wind environment issues at different zones. For 
instance, new development projects should not be allowed at the purple zone, and should be strictly controlled at 
the yellow zone (Class 2: Low, 0.6 m/s – 1.0 m/s) with the detailed study of AVA evaluation. Given the low air 
pollutant dispersion in the purple and yellow zones, planners should not arrange additional bus stops, terminus, 
and heavy traffic roads at these zones to avoid trapping the emitted air pollutant. 

Second, urban planners and architects can apply this modelling-mapping method to evaluate the effect of 
a new building on the neighboring wind environment. Two scenarios were included in this case study: (a) the 
scenario without and (b) with new building. Figure 6 shows the new building, the surrounding street grid, and 
prevailing wind directions. In scenario a, the modelling results indicated poor existing wind environment 
surrounding the site, as depicted by the red area with VR less than 0.2, and better wind environment along 
Hennessy Road (i.e. the brown area with VR larger than 0.2). In scenario b, when we put a new building into the 
site, the red area with lower VR is enlarged in both windward and leeward direction. The affected areas are 
highlighted in Figure 6.  
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6. Conclusion and Future Work 
After broadly reviewing the urban aerodynamic properties and the corresponding planning principles, we 

developed a modelling–mapping approach to provide fine-scale pedestrian-level wind speed between buildings. 
High spatial resolution modelling results and low computational cost are two attractive features of this new 
approach. It should be noted that the modelling-mapping approach may not be generalizable to urban densities 
that are different from Hong Kong (metropolitan areas). Planners should consider that following aspects before 
applying this approach to other cities: 
a) The new approach is valid only for high density urban areas (f > 0.3-0.4) (MacDonald, e al., 1998) since we 

developed this new approach with the assumption that the vertical momentum in the urban canopy layer can be 
ignored because compact high buildings interfere with each other. Therefore, the local surface roughness f at 
the urban scale must be first investigated prior to applying this approach at other cities.  

b) To calculate f-point in other cities, one should identify the value of ∆z in the calculation of f’ based on the local 
urban morphology (Yuan, et al, 2014).  The f (0–15m) (∆z: 0-15m) was applied in this study due to the specific 
podium morphological characteristic at Hong Kong.  

c) The relationship between f-point and VR (i.e. slope coefficients and intercepts) could be different in other cities, 
given that we developed the regression equations only based on the situation in Hong Kong, and the urban 
densities and urban morphologies are different in other cities. Nonetheless, f-point is generally considered as a 
reasonable index to describe the local wind permeability.  

d) If the local wind data is available, the same workflow in this study can be applied to develop the regression 
equations. The analysis results from other cities could provide insight into the sensitivity of the relation between 
f-point and VR to changes of urban densities and urban morphologies, which in turn could validate the 
applicability of the modelling and mapping method developed in this study to more cities.  
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