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1. Introduction 

 

Elevated pollutant concentrations are commonly observed in urban areas, such as street canyons, threatening 

human health. While most practical dispersion models assume inert pollutants, emissions from traffic exhaust are 

chemically reactive. Their dynamics are further complicated by atmospheric turbulence, geometry/orientation of 

buildings, thermal stratification and chemical kinetics, etc. Reactive flue gases, including nitrogen oxides (NOx) 

and volatile organic compounds (VOCs), are among the most important pollutants that would cause a series of 

public health problems (Cheng et al., 2013, Mahiyuddin et al. 2013). There is thus a need for improved 

understanding of the dynamics of chemically reactive pollutants. In this paper, turbulent dispersion of reactive 

pollutants in the atmospheric boundary layer (ABL) over hypothetical urban areas is numerically investigated using 

large-eddy simulation (LES). Their transport behavior in and over idealized street canyons of unity aspect ratio in 

isothermal conditions is studied. The worst scenario is considered in which the prevailing flow is perpendicular to 

the street axes. In pseudo-steady, fully developed turbulent flows, nitric oxide (NO) is emitted from the ground 

surface in the first street canyon into the urban ABL doped with ozone (O3). By looking into the pollutant 

concentrations and dispersion characteristics over the buildings, it is realized that, apart from pollutant removal, 

ABL turbulence plays an important role in the mixing of chemicals, which in turn substantially affects the reaction 

rates. To contrast the effect of chemistry and dispersion, we compare the time scales of reaction and diffusion of 

pollutants by switching on and off and NOx-O3 chemistry. It is found that chemical reaction reduces (increases) the 

diffusion time scale near the roof level of the rough surface at the bottom (near the domain top in the far field). 

There exists a branching point in the z direction for different effect caused by chemical reactions. Below this point, 

the diffusion time scale of NO is increased by the reaction, and vice versa.    

2. Methodology 

 

LES with the one-equation subgrid-scale (SGS) model is adopted to handle the flows and the dispersion of 

chemically reactive pollutants over an array of idealized, identical street canyons. A (spatial) box filter is applied to 

decompose the variables into their resolved-scale (denoted by overline) and SGS components. The governing 

equations thus consist of the continuity 
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and the momentum conservation 
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in resolved scales. Tensor notation is used where iu  are the velocity components, t the time, xi the Cartesian 

coordinates, P the (background) pressure gradient (driving the prevailing flow), p  the kinematic pressure, ν the 

kinematic viscosity, νSGS the SGS kinematic viscosity and δij the Kronecker delta.  

 

The following chemical reactions 
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are included to handle the reversible pollution chemistry. Here, NO2 is the nitrogen dioxide, O the ground-state 
oxygen atom and M the third-party molecule (usually nitrogen N2 or oxygen O2) to absorb the excess vibration 

energy. We assume that the rate constants remain unchanged throughout the LES in which j1 = 8.910-3 sec-1, k2 = 

3.6410-13 ppb-1 sec-1 and k3 = 4.4310-4 ppb-1 sec-1. 
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In the reversible chemistry, we use the Damköhler number Da to compare the turbulent diffusion and chemical 
reactions. It is defined by the ratio of diffusion-to-reaction time scales, as follows 

rdDa   (6) 

where d and r are the time scales of diffusion and reaction, respectively. 

 

In this paper, the diffusion time scale is defined as 
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where z is the plume dispersion coefficient after the ground-level area source in the first street canyon and 
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the eddy diffusivity by closure assumption. Here, angular brackets and double primes represent the ensemble 

average and the deviation from the ensemble average, respectively. The physical meaning of diffusion time scale 

d is indeed the time for diffusion acting on a pollutant concentration gradient over certain distance in crosswind in 

the plume. The length scale of vertical dispersion coefficient z is used in this paper.  

 

The reaction time scales are different for the chemicals. For NO, it is measured by 
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and for O3 is 
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They are the retention time of pollutants due to removal by chemical reactions only. Hence, the Damköhler 

numbers of NO and O3 are, respectively, 
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3. Computational Domain 

Figure 1 depicts the three-dimensional (3D) LES spatial domain employed in this paper. Its height is 12h that 

consists of 36 identical, idealized street canyons. The building height h and street width b are equal so the 

building-height-to-street-width (aspect) ratio h/b is equal to 1. The flow in the ABL core is driven by the background 

pressure gradient that is perpendicular to the street axes, representing the worst scenario of pollutant removal. 

 
 

Fig. 1 computational domain Fig. 2 Boundary conditions 

 

Figure 2 shows the boundary conditions (BCs) of the current LES. The infinitely large array of street canyons is 

constructed by periodic BCs in the horizontal extent. The prevailing wind enters the spatial domain from the 

upstream inlet with background O3 of concentration 1 ppb. An area source of NO of concentration 1 ppb is 

continuously emitted from the ground surface of the first street canyon to simulate vehicular emission. 

 

Each street canyon comprises of 12, 96, and 12 grid cells in the streamwise (x), spanwise (y), and vertical (z) 

directions, respectively. There are 864 (x)  96 (y)  72 (z) grid cells in the ABL core over the street canyons. The 

entire spatial domain is thus discretized by over 6.4 million grid cells.  
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3. Results and Discussion  

Figure 3 shows the vertical dispersion coefficient of NO z as a function of streamwise distance x measuring 

from the pollutant source. Indeed z is the length scale measuring the vertical extent of the pollutant plume. The 

larger the dispersion coefficient, the wider is the pollutant plume coverage.  

 

 
Fig. 3 Dispersion coefficient of NO 

 

Figure 4 depicts the diffusion time scale d of NO (normalized by the diffusion time scale near the roof level d0 at 

z = 1.1h). Near the first street canyon (x = 6h), z is relatively small because the plume is not yet fully developed. 

The plume dispersion is thus limited near the roof level. The pollutant concentration gradient is small near the 

domain top so the diffusion time scale remains small from z = 3h and thereafter (Figure 4). To help analyze the 

plume characteristic, the streamwise domain is divided into near field (x ≤ 6h) and far field (x > 6h). In the far field, 

the vertical coverage is notable and the diffusion time scale also increases. The normalized diffusion time scale 

exhibits linear characteristic within the plume (z/z ≤ 10) that decreases with increasing distance from the plume 

centerline. Figure 5 compares the profile of vertical pollutant flux <w””> at different streamwise locations. A local 

maximum of vertical pollutant flux is observed near the roof level at different streamwise locations. A similar trend 

is also observed in the gradient of mean pollutant concentration (Figure 6).  

           

 
Fig. 4 Diffusion time scale for NO 
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Fig. 5 <w""> of NO Fig. 6 z  of NO 

                                       

Figure 8 depicts the reaction time scale of NO which is normalized by the reaction time scale at the domain top 

τNOr. In the near-wall region, O3 is consumed by the chemical reaction Equation (5). The O3 concentration is lower 

than that in the upper domain. Therefore, the reaction time scale of NO in the near-wall region is longer than that 

in the upper domain. In the far field the gradient of reaction time scale in the vertical direction become larger than 

that in the near field because of O3 deficit. The increasing speed of reaction time scale of NO in the near-wall 

region (below z/σz = 5) varies with x/h. The reaction time scale of NO increases faster in the far field than does in 

the near field. Figure 8 compares the profiles of Damköhler number of NO DaNO which exhibits the characteristic 

similar to that of the diffusion time scale. The diffusion time scale is much smaller compared with the reaction time 

scale. In this case, DaNO is smaller than 1, signifying that the turbulent dispersion is faster than its chemical 

counterpart. Hence, slow chemical reactions occur in the rather well-mixed condition of NO and O3 in the plume.  

 

  
Fig. 7 Reaction time scale of NO Fig. 8 Damköhler number of NO 

 

We use a passive scalar as the reference for reactive NO to investigate the effect of chemical reactions on the 

plume dispersion. The initial conditions and BCs of passive scalar are the same as those of NO but no chemical 

reaction is involved. The relative reduction in diffusion time scale 
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at x = 30h is plotted in Figure 9. Near the roof level, the chemical reaction tends to reduce diffusion time scale. For 

example, at x = 30h, below z = 2z, NO is smaller than passive scalar, implying that the chemical reaction reduces the 

diffusion time scale of pollutant. There exists a level for this effect over which the diffusion time scale is increased 
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by chemical reaction. Over z = 2z to the domain top, NO is larger than,passive scalar, signifying that the chemical 

reaction increases the diffusion time scale of pollutant. The trajectory of that level increases in the wall-normal 

direction z with increasing streamwise distance x measuring from the pollutant source. For instance, at x = 30h, the 

branching point is at z = 2h (Figure 9). Moreover, at x = 54h, the branching point is at z = 2.88h (Figure 10). Figure 

11 illustrates the trajectory of branching point as a function of streamwise distance x in which a linear relation is 

clearly observed. 

 

 

Fig. 9 Relative reduction in diffusion time scale 
(𝜏𝑃𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡1−𝜏𝑁𝑂)

𝜏𝑃𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡1
× 100%. (at x /h= 30) 

 

 

Fig. 10 Relative reduction in diffusion time scale 
(𝜏𝑃𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡1−𝜏𝑁𝑂)

𝜏𝑃𝑜𝑙𝑙𝑢𝑡𝑎𝑛𝑡1
× 100%. (at x /h= 48) 

 

4. Conclusion 

A series of LES is performed to examine the dispersion behaviors of reactive pollutants (NO is used in this 

paper) over hypothetical urban areas. By using the time scales of diffusion and chemistry, the variation of 

Damköhler number of NO in plume dispersion is reported. It is find that the two time scales are coupled with each 

other. In particular, pollutant chemistry could increase or decrease the diffusion time scale, i.e. dispersion 

coefficient. As such, the dispersion and chemistry of pollutant should not be considered separately. 
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Fig. 11 Critical point in the streamwise x direction 
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