A Multiscalar Thermal Analysis of Urban Playgrounds

Seeing Urban Playgrounds Through a New Lens

Jennifer Vanos, PhD¹

Ariane Middel, PhD²

Ben Ruddell, PhD²

Grant McKercher, BS¹

Evan Kuras, BA³

¹ Texas Tech University, Lubbock, TX, USA ² Arizona State University, Tempe, AZ, USA ³ University of Massachusetts at Amherst, MA, USA

International Conference on Urban Climates Toulouse, France, 2015

Background & Importance

CHILDREN are not little adults

- Higher surface-area-to-body mass ratio; effects of heat are heightened¹
- Lower sweat rate can't cool as efficiently²
- Closer to ground

Playgrounds not designed with prevailing climate in mind

- 'Bioclimatic Design'
- Climate Change & Urban Growth
 → differing vulnerability and
 adaptation of children³

"Burning Hot: Heat Danger on the Playgrounds - NYC"

- Dozens per year treated for burns from playground surfaces
- ~ three seconds to burn on solid surfaces greater than 60°C (140°F)
- Most playground equipment **not** tested for heat safety.

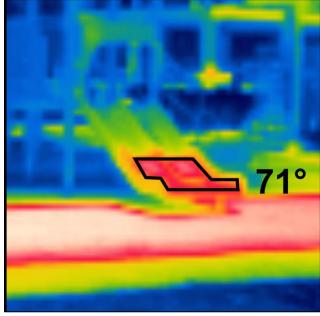
Meteorologist Amy Freeze: http://wabc.typepad.com/freezefront/2012/

¹Wenger (2003), ²Falk (1998), ³Vanos (2015)

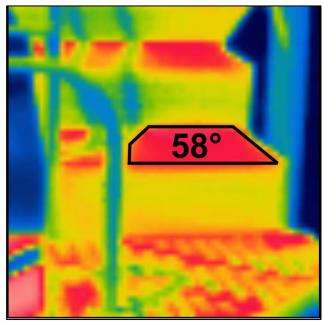
Background & Importance Urban Landscape Design

- outdoor spaces in which children seek or are encouraged to be the most active (e.g., community playgrounds & parks) are potentially the most harmful in terms of heat and burn risk from contact with surfaces (Vanos 2015).
- physical and meteorological evidence-base at the correct spatial scale is limited in North America to support proper bioclimatic design to mitigate extreme heat (Brown et al. 2015).
- urban heat-health research often employs coarse scales collected from sparse standardized meteorological observations for extreme heat analysis

\rightarrow the scale of measurement can affect a study's conclusions


Diverse Park Designs

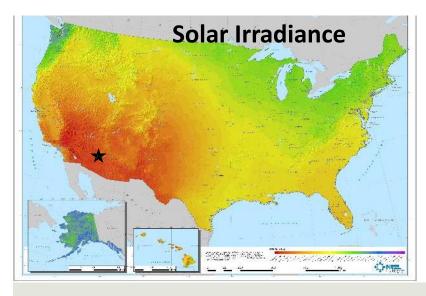
Vanos (2015) - Environment International


Shade & Surface Temperature

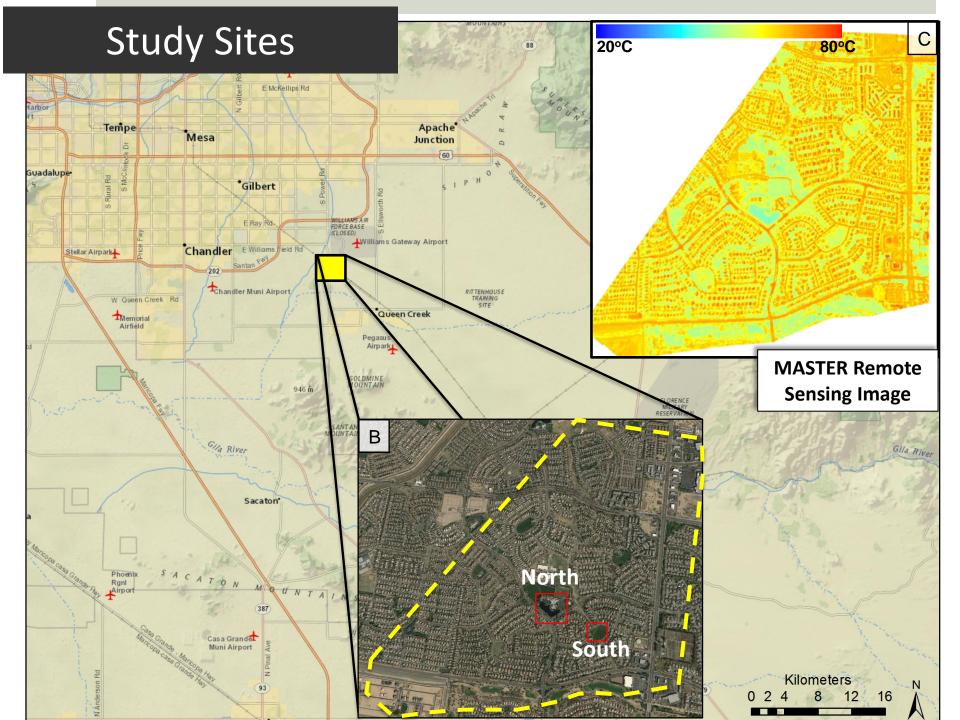
- Obvious: playgrounds could use a lot more shade, black surfaces get a whole lot hotter than those painted white¹
- Less Obvious: Well-intentioned changes, such as 'astro-turf', rubber and plastic, appears to get even hotter than asphalt in the sun¹

Slide half in shade (shade sail), half in sun

30°


Steps in sun, black; metal powder coated

80°


Playground Pilot Sites: Gilbert, AZ

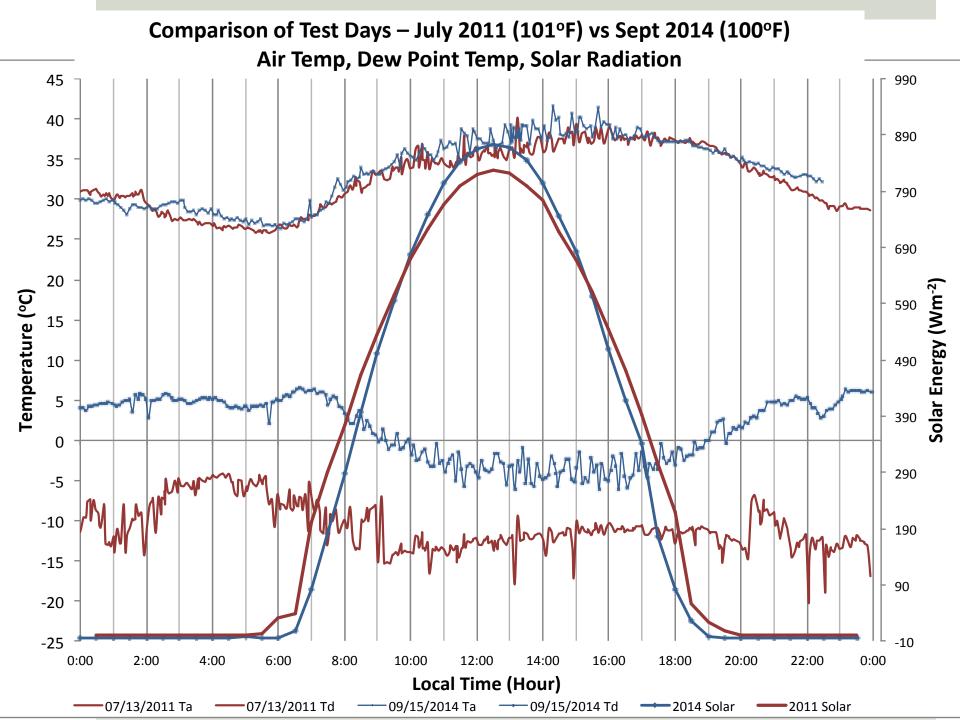
Goal:

- To resolve variability in various scales ('touch' scale → microscale → neighborhood scale)
 - Link remote sensing and touch-scale surface temperatures
 - Assess within-grid temperature variations in playgrounds
 - Provide information for public safety and design standards

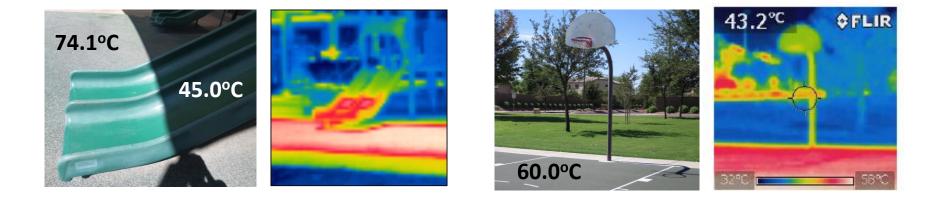
 AZ: arid, SUNNY, hot, warming faster than rest of USA, uneven distribution of heat burden (Walsh et al. 2014, Kuras et al., 2014)

North Playground

South Playground

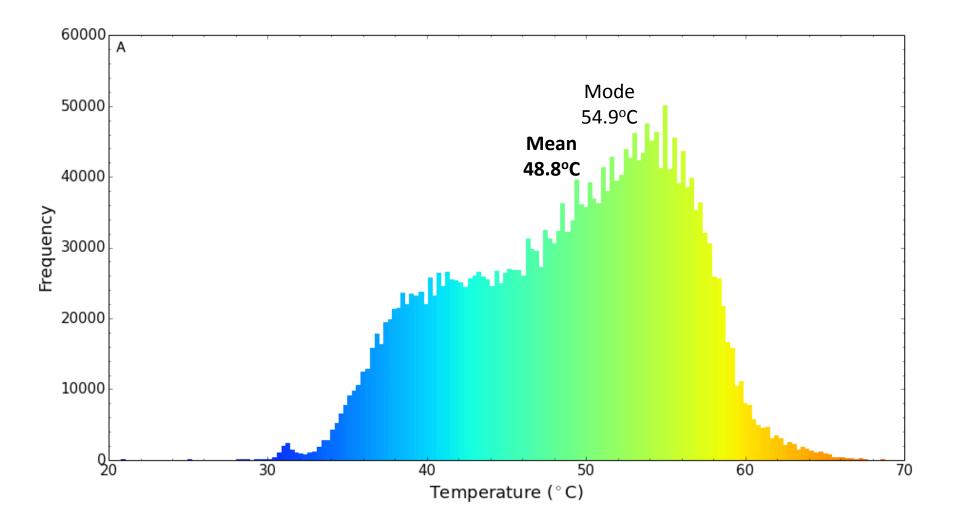


Data

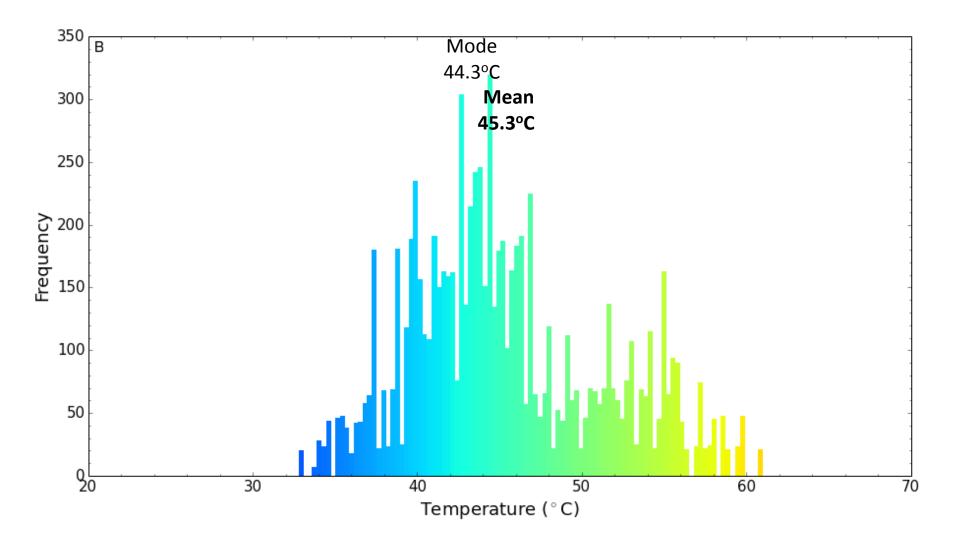

- Remotely Sensed: MODIS/ASTER (MASTER)¹
 hyperspectral airborne sensors NIR band ~6.8m resolution
- July 13 2011 mid-afternoon LST, peak T2m was 38.0°C (100°F)

2) In-situ: Hand IRT, FLIR camera, and microclimate

- September 15 2014, Peak T2m was 38.5°C (101°F)
- FLIR handheld IR photos
- Onsite portable & mobile weather station



Visible & Infrared Imagery

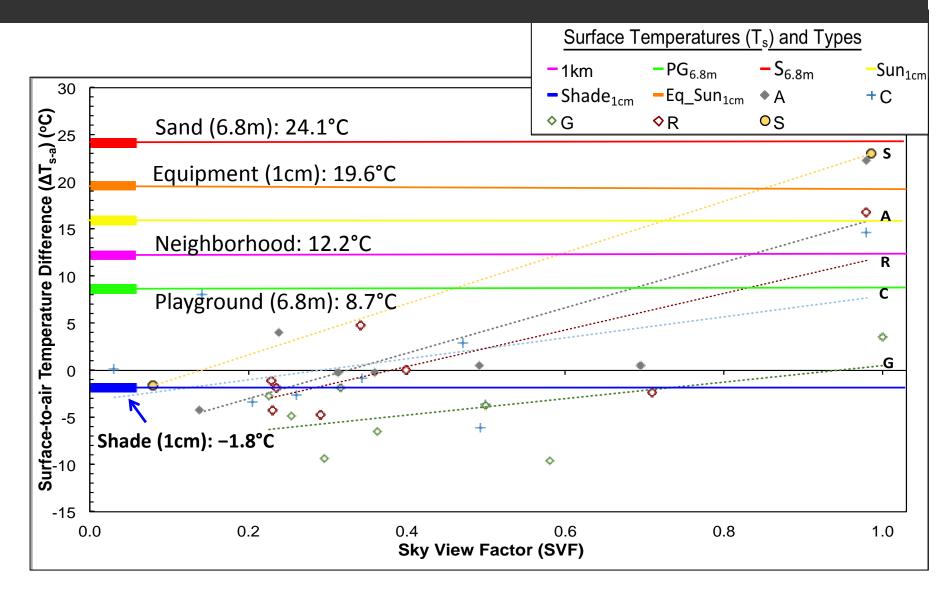


	Contact Time:	3 sec	5 sec	1 min
Metal	Uncoated	60°C	57°C	51°C
Coated Metal ¹	Lacquer Coat: 100µm	68°C	61°C	51°C
	Powder: 90μm Enamel: 160μm	65°C 63°C	60°C 59°C	51°C 51°C
Stone Material	Concrete, granite, asphalt	73°C	60°C	56°C
Plastic ²	Polyamide, acrylglass, duroplastic	77°C	74°C	60°C
Wood	Bare, low moisture	99°C	93°C	60°C
¹ Polyurethane Enamel-Coated Steel; ² UV stabilized high-density polyethylene				

Afternoon Land Surface Temperature Distribution <u>Full Neighborhood</u> - MASTER

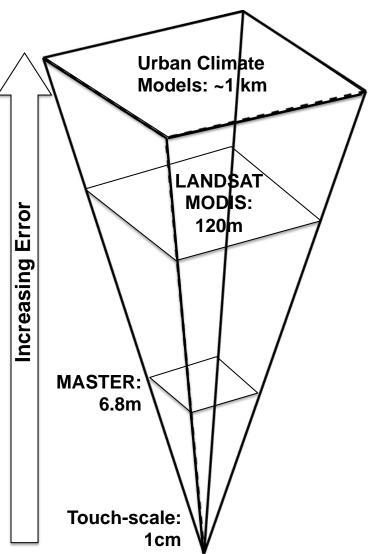
Afternoon Land Surface Temperature Distribution <u>Within Playgrounds</u> - MASTER

In-Situ Surface Temperature Results


NORTH Playground	Sun (°C)	Shade (sail) (°C)	Shade (tree) (°C)
'Jumpy' Surface (ground cover)	<mark>87.2</mark> (188 F)	46.7 (116 F)	42.2 (107 F)
Sand	62.8 (145 F)	33.9 (93 F)	32.8 (91 F)
Posts of Playground	51.1 (124 F)	38.9 (102 F)	38.3 (100 F)
Metal Slide	74.1 (165 F)	45.0 (113 F)	-
Bouncy Rider (handle red)	46.1 (115 F)		
Bouncy Rider (seat red)	62.2 (143 F)		

SOUTH Playground	Sun (°C)	Shade (tree) (°C)
Sand	59.4 (138 F)	33.9 (93 F)
Basketball Court, green	60.0 (140 F)	
Splash Pad	42.2 (107 F)	
Slide, plastic, green	71.1 (159 F)	43.9 (111 F)

Bench – 64 °C


Surface-to-air temperature deltas

Scale Offsets: represent errors from touch-scale

Playground Equipment Category	(1) Playground offset of 1cm to 6.8m scale (°C)	(2) Playground offset of 1cm to 1km scale (°C)	
Sitting - Child	13.6	10.1	_
Walking	9.9	6.4	
Holding	8.0	4.5	
Sitting – Adult & Child	8.8	5.3	
Average	10.1	6.6	

- Values represent error, and demonstrate a scale mismatch
- The coarser scales underestimate dangerous T_s within playgrounds
- It is at the touch-scale (~1cm scale) where children experience extreme temperatures—at times resulting in burns or damage to the skin

Logarithmic display of scales used in urban climate research

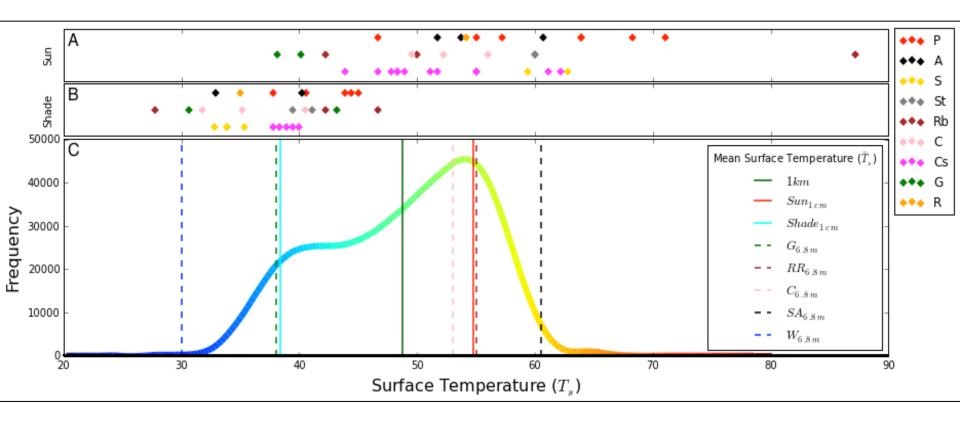
Further Assessments

- Account for the differential heating and cooling of each material type (ground, surface) and condition (sun, shade) for time detrending
- Further observations within the biophysical environment to develop discrete scale offset models account
- Apply to other climate zones

Strategies for Mitigating Hot Playground Exposure

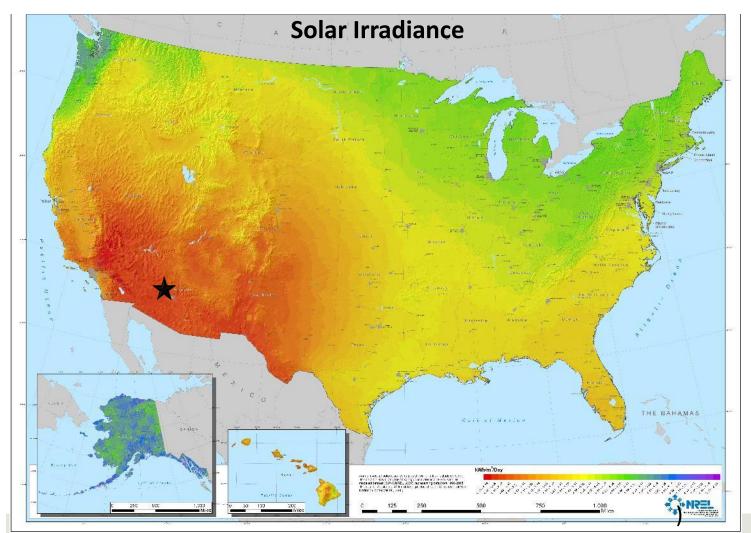
- Need standards for materials used in playgrounds (equipment and ground)
- Shade is effective; brings surface temperatures into safe range
- Both natural (tree) and artificial (shade sail) shade types were associated with significant reductions in T_s
- Burns potential diminished; burns completely avoidable

Thank you!


Ariane Middel, PhD School of Geographical Sciences and Urban Planning, Arizona State University, Tempe, AZ, USA

Observed surface temperatures

Burns & Contact time


	Contact Time:	3 sec	5 sec	1 min
Metal	Uncoated	60°C	57°C	51°C
Coated Metal ¹	Lacquer Coat: 100µm	68°C	61°C	51°C
	Powder: 90μm Enamel: 160μm	65°C 63°C	60°C 59°C	51°C 51°C
Stone Material	Concrete, granite, asphalt	73°C	60°C	56°C
Plastic ²	Polyamide, acrylglass, duroplastic	77°C	74°C	60°C
Wood	Bare, low moisture	99°C	93°C	60°C
¹ Polyurethane Enamel-Coated Steel; ² UV stabilized high-density polyethylene				

(ISO 13732, 2010)

Study Site: Power Ranch Community (Gilbert, AZ)

AZ: arid, SUNNY, hot, warming faster than rest of USA, uneven distribution of heat burden (Walsh et al. 2014, Kuras et al., 2014)

