

# Outdoor Thermal Comfort under Photovoltaic Canopies A Seasonal Field Study at Arizona State University

Ariane Middel, Nancy J. Selover, Nalini Chhetri, and Björn Hagen





# **Phoenix Climate**

#### Mild winters

average high temperatures between 19°C and 22°C from December to February

#### Hot summers

average high temperatures over 38°C from June to August

Annual average rainfall of 8 inches







# **Heat Mitigation Strategies**

#### Urban fabric modification

• high surface albedo increases reflectivity and reduces heat absorption

### • Urban form modification

 density and height-to-width ratio of buildings alters ventilation

#### Urban Forest

 cools through shading and evapotranspiration

### • Thermal comfort

• shade plays an important role in creating pedestrian-friendly outdoor spaces





# **Research Goals**

### Quantify benefit of shade

- assess thermal comfort of shaded outdoor spaces vs. open spaces
- Investigate relationship between perceived comfort and
  - outdoor microclimate conditions
  - personal/psychological factors





# **Study Site: PV Canopy Structures**





# **Experimental Design**

### Stationary sensors at 6 locations around the MU

- continuous measurement
- every 5 minutes since June 4, 2014
- shielded air temperature/humidity sensors

#### Sensor transects

- instantaneous measurements every hour (07:00h-22:00h)
  - pre-monsoon summer (June 10 and 19, 2014)
  - fall (November 11, 2014)
  - winter (January 22, 2015)
  - spring (April 2, 2015)
- air temperature, humidity, wind speed, globe temperature, WBGT, solar radiation, surface temperature







# **Location of Stationary T/RH Sensors**





# **Observed T and MRT** (calculated from T<sub>G</sub>)

### June 19, 2014 and January 22, 2015





# **Field Survey Design**

### Questionnaire

- structured interviews
- quasi-experimental design (subjects were not completely randomly chosen)
- transversal survey (each person only participated once)
- time to complete survey: 3 minutes

### • Time frame

- dates of sensor transects (1 day each season)
- 08:00 AM to 06:00 PM







# **Thermal Comfort Survey**

- Location
- Time
- General personal information
- Adaptation level
- Thermal comfort
- Thermal perception
- Short-term thermal history
- Activity level
- Thermal resistance of clothing
- Perceived control factor
- Temperature estimate









# icuco

# **Survey Samples**

|        |        | summer | fall | winter | spring |
|--------|--------|--------|------|--------|--------|
|        | male   | 184    | 224  | 189    | 159    |
| gender | female | 122    | 140  | 149    | 117    |
|        | 18–24  | 190    | 241  | 269    | 211    |
|        | 25–34  | 61     | 67   | 54     | 37     |
| 250    | 35–44  | 18     | 14   | 6      | 11     |
| age    | 45–54  | 14     | 18   | 6      | 8      |
|        | 55–64  | 17     | 17   | 1      | 7      |
|        | 65+    | 6      | 5    | 0      | 2      |
|        | shade  | 252    | 270  | 225    | 225    |
|        | sun    | 54     | 94   | 113    | 51     |
| N = 1  | 284    | 306    | 364  | 338    | 276    |



# **Thermal Sensation Votes (TSV) - Summer**





# **Thermal Sensation Votes (TSV) - Winter**





# **Temperature Estimates**

- Summer
  - *full sun:* respondents **overestimated** temperatures by 1.3°C (±0.6°C)
  - shade: respondents underestimated temperatures by 1.6°C (±0.3°C)
- Fall
  - *full sun:* respondents **overestimated** temperatures by 3.1°C (±0.4°C)
  - shade: respondents got the temperature right!  $(\pm 0.3^{\circ}C)$
- Winter
  - *full sun:* respondents **overestimated** temperatures by 5.8°C (±0.4°C)
  - *shade:* respondents **overestimated** temperatures by 2.6°C (±0.3°C)
- Spring
  - *full sun:* respondents **overestimated** temperatures by  $2.3^{\circ}C (\pm 0.5^{\circ}C)$
  - shade: respondents underestimated temperatures by 1.0°C (±0.3°C)



# Analysis

- Hourly meteorological observations were interpolated and linked to surveys based on time stamp
- Comparison of responses in the shade and in the sun
  - T-test
- Relationship between perceived comfort and climatic/non-climatic factors
  - OLS and multiple regression





# Sun vs. Shade

### T-Test (all seasons)

- temperature\*
- surface temperature\*
- WBGT\*
- globe temperature\*
- incoming shortwave radiation\*
- net radiation\*
- MRT\*
- relative humidity
- Heat index
- significant at the 0.01 level (2-tailed)

### • T-Test (split by season)

 thermal comfort (TSV\*) varies significantly between sun and shade in the summer





# **Perceived Comfort and Microclimate**

- Multiple Regression (N = 1284, all seasons)
  - dependent variable: TSV
  - independent variables: *meteorological observations*
    - air temperature and globe temperature significant at the 0.01 level
    - absolute humidity, surface temperature, incoming radiation, net radiation, and WBGT not significant



globe temperature was the strongest predictor of perceived comfort







## **Perceived Comfort vs. Globe Temperature**





# **Perceived Comfort and Other Factors**

- Multiple Regression (N = 1284, all seasons)
  - dependent variable: TSV
  - independent variables: globe temperature and survey responses
    - adaptation level, sun exposure, gender, metabolic rate (5mins), location choice, and clothing level significant at the 0.01 level
    - exposure to AC (5mins and 30 mins), metabolic rate (30 mins), age, and health-related mood not significant
  - Model improved from  $R^2 = 0.51$  to  $R^2 = 0.56$
  - F-test confirms that change in R<sup>2</sup> is significant









# **Summary and Future Work**

### Shade vs. Sun

- in all seasons, photovoltaic canopy shade decreased TSV by ≈1 point on the Likert scale
- in the summer, TSV varied significantly between shade and sun
- respondents in the sun overestimated temperatures, but respondents in the shade underestimated temperatures in the summer and spring

#### Perceived comfort and climatic/non-climatic factors

- globe temperature explained about 50% of the variance in comfort
- personal factors slightly improved the results (statistically significant)

### • Future Analyses

- more in-depth analysis of the impact of the relative importance of climatic and non-climatic factors
- investigate relationships by season



# **Thank you!**

# **Questions?**



# **Thermal Comfort**

*"condition of mind that expresses satisfaction with the thermal environment; assessed by subjective evaluation" (ASHRAE Standard 55)* 

### Main factors influencing thermal comfort

- Environmental factors
  - air temperature
  - mean radiant temperature
  - wind speed
  - relative humidity
- Personal factors
  - metabolic rate
  - clothing insulation
- Psychological factors





# **Sensor Specifications**

| Sensor                  | Variable(s)         | Range                        | Accuracy                                                            | Height  |
|-------------------------|---------------------|------------------------------|---------------------------------------------------------------------|---------|
| LASCAR electronics      | temperature         | -35° to +80°C                | ± 0.3°C                                                             | 2.6 m   |
| EL-USB-2+<br>(shielded) | humidity            | 0% to 100% RH                | ± 2.0% RH                                                           | 2.0 111 |
|                         | temperature         | -10° to +55°C                | ± 0.5°C                                                             |         |
|                         | humidity            | 0% to 100% RH                | ± 3.0% RH                                                           |         |
|                         | globe temperature   | -10° to +55°C                | ± 1.4°C                                                             |         |
| Kestrel 4400            | WBGT                | see temperature              | ± 0.7°C                                                             | 1.1 m   |
|                         | wind speed          | 0.6 to 60.0 ms <sup>-1</sup> | larger of 3% of reading,<br>least significant digit or<br>20 ft/min |         |
| DeltaTRAK 15002         | surface temperature | -40° to 510°C                | ± 2.0°C                                                             | 1.1 m   |





# **Thermal Comfort Survey**

#### Thermal Comfort Study

Thank you for consenting to participate in this thermal comfort study. We are assessing thermal comfort of pedestrians on the ASU campus. All survey responses will remain anonymous, confidential, and the results will be published in aggregated form only.

#### 1. On the scale below, how do you feel today (health-wise)?

| -2       | -1  | 0    | +1   | +2        |
|----------|-----|------|------|-----------|
| very bad | bad | fair | good | very good |

#### 2. How familiar are you with Phoenix summer climate?

| very familiar                      | familiar                        | somewhat familiar                                 | not familiar         |
|------------------------------------|---------------------------------|---------------------------------------------------|----------------------|
| ☐ I have lived here<br>all my life | ☐ I have lived here<br>foryears | ☐I have experienced a summer in the desert before | □ I am visiting from |

#### 3. Your reason for being at this location is:

#### 4. Please indicate how you feel temperature-wise at this moment:

| -4        | -3   | -2   | -1               | 0       | +1               | +2   | +3  | +4       |
|-----------|------|------|------------------|---------|------------------|------|-----|----------|
| very cold | cold | cool | slightly<br>cool | neutral | slightly<br>warm | warm | hot | very hot |

#### 5. Please indicate your current comfort level:

| comfortable | slightly uncomfortable | uncomfortable | very uncomfortable |  |
|-------------|------------------------|---------------|--------------------|--|
| 0           | 1                      | 2             | 3                  |  |

#### 6. Would you prefer the thermal environment in this location to be...

| -3          | -2     | -1              | 0                         | +1              | +2     | +3          |
|-------------|--------|-----------------|---------------------------|-----------------|--------|-------------|
| much cooler | cooler | slightly cooler | neither warmer nor cooler | slightly warmer | warmer | much warmer |



#### 7. Please indicate your current exposure to the sun:

| □ full aun | shade (under tree)                     |
|------------|----------------------------------------|
|            | □ shade (under solar canopy structure) |

- 8. Please estimate the current ambient temperature (in °F):
- 9. If you are currently in the sum, how much cooler do you think will it be in the shade? If you are currently in the shade, how much warmer do you think will it be in the sun? (temperature in °F): \_\_\_\_\_\_

#### 10. Where were you/what were you doing...

| 5 minutes prior to being here:    | 30 minutes prior to being here:   |
|-----------------------------------|-----------------------------------|
| □ driving a car                   | □ driving a car                   |
| 🔲 riding a bike                   | riding a bike                     |
| walking around                    | walking around                    |
| public transport                  | public transport                  |
| exercising                        | exercising                        |
| □ inside air-conditioned building | □ inside air-conditioned building |
| other:                            | □ other:                          |

#### 11. Clothing (please check all that apply):

| □ shirt or blouse, short sleeves | shorts or skirt long | sweater |
|----------------------------------|----------------------|---------|
| □ shirt or blouse, long sleeves  | pants or jeans       | 🗆 coat  |

#### 12. Age group

| □ 18-24 | □ 35-44 | 55-64 |
|---------|---------|-------|
| □ 25-34 | □ 45-54 | ☐ 65+ |

#### 13. Gender

□ male □ female

14. Current time:

|                             | Thermal           |                 | Thermal           |                 | Thermal           |                 |
|-----------------------------|-------------------|-----------------|-------------------|-----------------|-------------------|-----------------|
|                             | Perception        |                 | Comfort           |                 | Preference        |                 |
|                             | r*                | Sig. (2 tailed) | r*                | Sig. (2 tailed) | r*                | Sig. (2 tailed) |
| Age                         | 194 <sup>3</sup>  | .001            | 154 <sup>3</sup>  | .007            | .046              | .420            |
| Gender                      | 084               | .145            | 033               | .285            | .041              | .477            |
| Health Related Mood         | 185 <sup>3</sup>  | .001            | 228 <sup>3</sup>  | .000            | .109              | .058            |
| Adaptation                  | 286               | .000            | 203 <sup>3</sup>  | .000            | 030               | .601            |
| Location Choice             | 085               | .152            | 080               | .170            | .155 <sup>3</sup> | .007            |
| Current Exposure            | 153 <sup>3</sup>  | .007            | 102               | .076            | 033               | .563            |
| AC/ No AC (5min ago)        | 165 <sup>3</sup>  | .004            | 249 <sup>3</sup>  | .000            | .176 <sup>3</sup> | .002            |
| AC/ NO AC (30min ago)       | .009              | .878            | 051               | .380            | .033              | .569            |
| Metabolic Rate (5min ago)   | .264 <sup>3</sup> | .000            | .303 <sup>3</sup> | .000            | 126 <sup>2</sup>  | .028            |
| Metabolic Rate (30 min ago) | 038               | .516            | .047              | .419            | 019               | .748            |
| Clothing                    | 045               | .433            | 062               | .280            | 024               | .672            |
| WBGT                        | .324 <sup>3</sup> | .000            | .261 <sup>3</sup> | .000            | .036              | .533            |
| Heat Index                  | .291 <sup>3</sup> | .000            | .290 <sup>3</sup> | .000            | .037              | .517            |
| Globe Temperature           | .360 <sup>3</sup> | .000            | .308 <sup>3</sup> | .000            | .022              | .701            |
| MRT                         | .327 <sup>3</sup> | .000            | .258 <sup>3</sup> | .000            | .030              | .598            |
| PET                         | .334 <sup>3</sup> | .000            | .263 <sup>3</sup> | .000            | .047              | .410            |

Spearman's correlation coefficient

2 Correlation is significant at the 0.05 level (2-tailed)

3 Correlation is significant at the 0.01 level (2-tailed)



icuco



