

Evaluation of building-scale heat-stress analysis system (BioCAS) based on mortality observation in Seoul

National Institute of Meteorological Research, KMA, Korea <u>Kyu Rang Kim</u> Ji-Sun Lee Byoung-Choel Choi Weather Information Service Engine project Chaeyeon Yi Technical Univ. of Berlin, Germany Dieter Scherer

How do you assess the Impact of heat stress by urban development?

2002 : Before the construction

2011 : After the new town development

- Heat vulnerability?
- Ventilation condition?

Mortality increase during heat waves

- 80 more people (24 July, 1994 in Seoul)
- ~3000 more people (1994 in Korea)

 Can we assess the impact of temperature increase as mortality increase by the construction of buildings or parks?

BioCAS:

Impact Assessment System for Heat Stress

- Integration of four models:
 - Climate Analysis Seoul (CAS, T)
 - Evaluated by weather observation
 - Solar Radiation (SOLWEIG, T_{mrt})
 - Klima-Michel Model (KMM, PT)
 - Excess Mortality Rate (r_{EM})
 - Published: Needs extensive evaluation on the health impact
- Evaluation by observed health impact
 - Mortality and No. of hospital visits of patient by heat waves at district level in Seoul

Climate Analysis Seoul (CAS)

• Input: Airborne LiDAR and satellite images for hi-res DEM & Land Cover

Daily death counts in Seoul

- Process: meso-scale wind conditions, thermal load of buildings and vegetation
- Output: temperature distribution, building configuration (for SOLWEIG)

Climate Analysis Seoul (CAS)

• Input: Airborne LiDAR and satellite images for hi-res DEM & Land Cover

Daily death counts in Seoul

Climate Analysis Seoul (CAS)

Process: Thermal Load of buildings and vegetation, Wind Conditions

Daily death counts in Seoul

Model optimization by high density observation

- more than 30 observational sites
 - temperature & humidity observation (1.5m):18 sites
 - wind observation (3.0m): 6 sites
 - T-RH observation at 4 heights: 12 sites
 - Satellite and thermal infrared images

 Output: temperature distribution, (+building configuration for SOLWEIG)

Yi et al. 2015: Estimating spatial patterns of air temperature at building-resolving spatial resolution in Seoul, Korea. UC (online first)

Solar Long Wave Environmental Irradiance Geometry (SOLWEIG)

- Input: building configuration from CAS hourly T, RH, Solar Rad at SWS
- Process: sky view factor, solar angle, shadow
- Output: mean radiant temperature (T_{mrt})

Hourly weather conditions observed at the reference station SWS during the heat event on August 5, 2012

Digital Surface Model (DSM) from CAS

Produced by TUB using CAS (CAP v2.1); data source: NIMR

Sky View Factor

Longwave Radiation

Shortwave Radiation

Mean Radiant Temperature (Tmrt)

Produced by TUB using SOLWEIG; DSM data source: NIMR

 T_{mrt} at DR Europyeong during a heat wave event on August 5, 2012 12:00KST A: old town, B: new town

Klima-Michel Model (KMM)

• Input: T, T_{mrt}, RH, Wind speed

The Thermal Environment

- Process
 - Thermal balance between the human body and the environment

• Output: Perceived temperature (PT)

Perceived Temperature (PT)

 PT calculates heat stress according to radiation (T_{mrt})

Produced by TUB (a, T_{mrt}) and NIMR (b, PT) on a heat wave event of Aug. 5, 2012, 12:00 KST

PT: 15:00 - 20:00 Aug. 5, 2012

15:00

16:00

17:00

20:00

18:00

Maximum PT, PT_{max} at the DR during the heat wave event on August 5, 2012 A: old town, B: new town

Excess Mortality Rate (r_{EM})

• Purpose: quantify the risk of a heat wave

Model development

Air temperature (hourty)

Daily death counts in Seoul

- Y(r_{EM}): increase in daily mortality rate relative to the expected base mortality rate*
- X(PT_{max}): daily maximum PT

ICD Code	Causes of the death
E00~99	Endocrine, nutritional and metabolic disease
F00~99	Mental and behavioral disorders
G00~99	Diseases of the nervous system
I00~99	Diseases of the circulatory system
J00~99	Diseases of the respiratory system
R00~99	Symptoms, signs and abnormal clinical and laboratory findings, NEC

* Daily base mortality rate was estimated as *Kysely* (2004).

Excess Mortality Rate (r_{EM})

Impact Assessment of an Urban Development

- Heat Wave Event: Aug. 5, 2012
 Hourly weather conditions from SWS
- Re-development Area: DR of CAS
 - Old and New town areas are included
 - TD & TD' from CAS, $T_{mrt^{\prime}}$ PT, and r_{EM}

DR: Detail Region CAS: Climate Analysis Seoul TD: Total Temperature Deviation TD': Temperature Distribution PT: Perceived Temperature T_{mrt}: Mean Radiant Temperature r_{EM}: Excess Mortality Rate

Assessment of a new town area "Old" town vs. "New" town

Kilometers

0.5 1

Ω

Area	Minimum	Maximum	Mean	Std. dev.	Area: $r_{EM} > 0$
Old town (A)	0	0.507	0.023	0.069	14.3 %
New town (B)	0	0.086	~ 0	0.001	0.1 %

* Record high r_{EM} = 1.12 (25 July, 1994) (112% increased mortality)

BioCAS : a New Tool for Bio-Climatic Impact Assessment

 Biometeorological models were integrated with high resolution climate analysis system for impact assessment of heat stress over complex urban area.

Kim et al. 2014: BioCAS: Biometeorological Climate impact Assessment System for buildingscale impact assessment of heat-stress related mortality. DIE ERDE 145 (1-2): 62-79

Evaluation of the BioCAS at the Whole City Area of Seoul

- Challenges:
 - Scalability: Impact assessment over the entire Seoul at very high resolution of 5 m is challenging.
 - Validity: Evaluation of the assessed impact based on observed human response is also very challenging.
- The evaluation was performed at districtlevel by comparing the mortality difference and estimated heat wave impact.

Evaluation of BioCAS based on Health Impact at District Level

- BioCAS analysis
 - Entire Seoul area (SR)
 - Heat wave event date: Aug. 5, 2012
- Analysis data and period
 - Daily mortality: 2004 2013 (10 years)
 - Daily visits by patients: 2006 2011 (6 years)
 - Heat specific deaths and visits only
- Statistical comparison
 - Correlation analysis between PT_{max} / r_{EM} and observed mortality / hospital visits by patients

• Input data @ < 5 m resolution (37 x 30 km)

Digital Building Model Digital Vegetation Model

Land Cover

• Computational problem \rightarrow run @ 25 m res.

- BioCAS analysis over Seoul city (SR)
 - Distribution of T, T_{mrt} , PT, PT_{max} , and r_{EM} @ 25 m resolution
 - Heat wave event date: Aug. 5, 2012
 - Other conditions were set as the same as in the impact assessment of the new town
- Data aggregation for the 25 districts
 - $\mathrm{PT}_{\mathrm{max}}$ and r_{EM}
 - Over the entire district area / over residential area only

Temperature of Seoul on Aug. 5, 2012
 – Estimated by CAS

09:00 LST

12:00 LST

15:00 LST

 Mean Radiant Temperature (T_{mrt}) on Aug. 5, 2012

 Estimated by SOLWEIG

09:00 LST

12:00 LST

15:00 LST

 Hourly Perceived Temperature (PT) of Seoul on Aug. 5, 2012

 Estimated by KMM

09:00 LST

12:00 LST

15:00 LST

Daily Max PT (PT_{max}) of Seoul
 – Estimated by the KMM

Excess Mortality Rate (r_{EM})

 Estimated by the EMR

- Data aggregation for the 25 districts
 - PT_{max} and r_{EM}
 - Over the entire district and over residential area only

Data aggregation for the 25 districts
 – Over the entire district

Data aggregation for the 25 districts
 – Over residential area only

Evaluation: Mortality and hospital visit by patients data

- Analysis data and period
 - Daily mortality: 2004 2013 (10 years)
 - Daily visits by patients: 2006 2011 (6 years)
 - Heat specific mortality and # of visits only

Evaluation: Statistical Comparison

- Pearson's correlation coefficients
 - Estimated PT_{max} @ residential area vs. observed mortality / visits

PT _{max}	Spatial			4.0 26	28 S	30 Spatial
	Minimum	Maximum	Mea	n		
Mortality	0.53**	-0.584**	0.23	4 ^{NS}		
(p)	(0.007)	(0.002)		(0	.26)	
Hosp. Visits	-0.340 ^{NS}	0.422*	-0.02	17 ^{NS}		
(p)	(0.10)	(0.036)		(0	.93)	

- Min. and Max. of the spatial PT_{max} distribution were positively correlated to mortality and # of visits by patients, but mean was not.
- > Spatial averaging of PT_{max} may not explain heat-induced vulnerability.

Evaluation: Statistical Comparison

- Pearson's correlation coefficients
 - Estimated r_{EM} vs.
 observed mortality / visits by patients

r _{eM}	Spatial			0 200 400) 600 Spat
	Maximum	Mean	Total		
Mortality	-0.105 ^{NS}	-0.243 ^{NS}	0.11	IS	
(p)	(0.62)	(0.24)		(0.60)	
Hosp. Visits	0.515**	0.0723 ^{NS}	0.387	7*	
(p)	(0.009)	(0.73)		(0.06)	

- Max. and Total of the spatial r_{EM} distribution were positively correlated to # of visits by patients, but mean was not.
- \succ Spatial averaging of r_{EM} also may not explain heat-induced vulnerability.
- \succ The r_{EM} model needs update based on observed data at district-level.

Conclusion

- First evaluation of bio-climatic impact assessment system (BioCAS) based on real-world observed human response to heat waves.
- It was evaluated at district-level by comparing the mortality and hospital visits by patients to the assessed heat impact.
 - Spatial maximum or minimum of heat wave impact was more important than mean values.
- The evaluation demonstrated that the localized heat wave vulnerability by buildings and vegetation did cause deaths and other health problems.
 - Building-resolving analysis is essential for bio-climatic assessment!