Watering practices and urban thermal comfort improvement under heat wave conditions

Maxime Daniel*, Aude Lemonsu¹, Vincent Viguie²

*PhD student CNRS/Météo France
*maxime.daniel@meteo.fr

¹Researcher CNRS/Météo France
²Researcher, CIRED

ICUC9 - CCMA7: UHI mitigation strategies III: watering processes studies

July 23rd 2015
Objective: mitigate the Urban Heat Island (UHI)

- Create reactive cities to face heat-wave events

Source: http://www.shutterstock.com
Objective: mitigate the Urban Heat Island (UHI)

- Create reactive cities to face heat-wave events
- Improve population thermal comfort

Source: http://www.shutterstock.com
Objective: mitigate the Urban Heat Island (UHI)

- Create reactive cities to face heat-wave events
- Improve population thermal comfort
- Implementation of vegetation in the city

Source: http://www.shutterstock.com

ICUC9 - CCMA7: Watering practices and urban thermal comfort improvement under heat wave conditions
Objective: mitigate the Urban Heat Island (UHI)

- Create reactive cities to face heat-wave events
- Improve population thermal comfort
- Implementation of vegetation in the city
- What type of vegetation? What irrigation must be used?

Source: http://www.shutterstock.com
Urban expansion modeling: NEDUM-2D (Viguié et al., 2014)

- Socio-economic model: macro-economic trends
 Population density, housing surfaces, ...
- “Business as usual” simulation until 2100

Spatial expansion and building typologies of the city of Paris in 2100
SURFEX model

- 1 km horizontal resolution over the Parisian Basin.
- Offline simulation
- 7 days close to 2003 heat-wave. Intensity 38 °C
- Urban model: TEB (Masson, 2000)
SURFEX model

- 1km horizontal resolution over the Parisian Basin.
- Offline simulation
- 7 days close to 2003 heat-wave. Intensity 38 °C
- Urban model: TEB (Masson, 2000)

2m-Temperature

Outdoor UTCI
SURFEX model

- 1km horizontal resolution over the Parisian Basin.
- Offline simulation
- 7 days close to 2003 heat-wave. Intensity 38°C
- Urban model: TEB (Masson, 2000)

2m-Temperature
- Outdoor UTCI
- Trees shadow not computed
- Basic underground hydrology
Plant irrigation scenarios

- **No irrigation**
 - No water supply
Plant irrigation scenarios

- **No irrigation**
 No water supply

- **Unrestricted irrigation**
 No hydric stress for vegetation
 Unrealistic but usually used
Plant irrigation scenarios

- **No irrigation**
 - No water supply

- **Unrestricted irrigation**
 - No hydric stress for vegetation
 - *Unrealistic but usually used*

- **Realistic irrigation**
 - Frequency: 8h of irrigation from 11pm to 7am
 - Rate: $3.50L/m^2/day
Pavement watering scenario

- Motivated by Takahashi et al. work (2010)
- Based on the sensitivity analysis of EPICEA (Kounkou et al., 2014)

Pavement watering

- Frequency: 3 min per hour
- Rate: 2.80 L/m²/day
Evapotranspiration

Suburbs

City Center

- Unrestricted
- Realistic
- Pavement
- No Irrigation

ICUC9 - CCMA7: Watering practices and urban thermal comfort improvement under heat wave conditions
Evapotranspiration

Suburbs

- Vegetation irrigation

City Center

- Pavement watering

- Unrestricted
- Realistic
- Pavement
- No Irrigation

Suburbs: vegetation irrigation
Evapotranspiration

- **Suburbs**: vegetation irrigation
- **City center**: pavement watering

ICUC9 - CCMA7: Watering practices and urban thermal comfort improvement under heat wave conditions
Spatial representation of the UHI during nighttime hours

- Large UHI
- Intensity: 3.5°C in city center
Urban Heat Island: Night

Unrestricted/Realistic:
No effect in city center
-2°C in suburbs

Pavement:
No improvement

2m-Temperature: Differences No Irrigation vs Irrigated scenarios

ICUC9 - CCMA7: Watering practices and urban thermal comfort improvement under heat wave conditions
Urban Heat Island: Day

- Large UHI
- Intensity: 2.5 °C in suburbs

Spatial representation of the UHI during daytime hours
Objective: Modeling tools | Scenarios | UHI | Thermal Comfort: UTCI | A combined scenario | Conclusions

Urban Heat Island: Day

2m-Temperature: Differences No Irrigation vs Irrigated scenarios

- Unrestricted: -3°C in suburbs
- Realistic: -1°C in suburbs
- Pavement: -1°C in city center
Outdoor Thermal Comfort: UTCI >32 °C

- 12h in Strong Heat Stress
- Up to 18h in City Center

Spatial distribution of outdoor strong heat stress conditions for day 7
Spatial distribution of outdoor strong heat stress conditions for day 7

- **Unrestricted**: Overall improvement
- **Realistic**: Improvement in Suburbs
- **Pavement**: Gains in city center

Outdoor Thermal Comfort: UTCI $> 32 \degree C$
Combined scenario: Realistic + Pavement in City Center

Night

Day

2m-Temperature: Differences No Irrigation vs Combined scenarios

Benefits from:
Realistic in suburbs
Pavement in city center
Combined scenario: Realistic + Pavement in City Center

Benefits from:
Realistic irrigation in suburbs
Pavement watering in city center

Distributions of outdoor strong heat stress conditions for day 7
Combined scenario: Realistic + Pavement in City Center

Benefits from:
- Realistic irrigation in suburbs
- Pavement watering in city center
- Almost no extra water supply needed
Water consumption

<table>
<thead>
<tr>
<th>Water demand</th>
<th>Unrestricted</th>
<th>Realistic</th>
<th>Pavement</th>
<th>Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>$10^6 m^3/day$</td>
<td>5.5</td>
<td>4.9</td>
<td>1.5</td>
<td>5.0</td>
</tr>
<tr>
<td>% Seine</td>
<td>18.7</td>
<td>17.3</td>
<td>5.1</td>
<td>17.5</td>
</tr>
<tr>
<td>% 2100 Seine</td>
<td>26.7</td>
<td>24.6</td>
<td>7.3</td>
<td>25.0</td>
</tr>
</tbody>
</table>

Vegetation location should be considered

Depends on city shapes
Water consumption

<table>
<thead>
<tr>
<th>Water demand</th>
<th>Unrestricted</th>
<th>Realistic</th>
<th>Pavement</th>
<th>Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>$10^6 m^3/day$</td>
<td>5.5</td>
<td>4.9</td>
<td>1.5</td>
<td>5.0</td>
</tr>
<tr>
<td>% Seine</td>
<td>18.7</td>
<td>17.3</td>
<td>5.1</td>
<td>17.5</td>
</tr>
<tr>
<td>% 2100 Seine</td>
<td>26.7</td>
<td>24.6</td>
<td>7.3</td>
<td>25.0</td>
</tr>
</tbody>
</table>

- Vegetation location should be considered
- Depends on city shapes

ICUC9 - CCMA7: Watering practices and urban thermal comfort improvement under heat wave conditions
Conclusions

- Vegetation needs to be irrigated
Conclusions

- Vegetation needs to be irrigated
- Vegetation irrigation efficient in the suburbs
Conclusions

- Vegetation needs to be irrigated
- Vegetation irrigation efficient in the suburbs
- Pavement watering only efficient in the city center
Conclusions

- Vegetation needs to be irrigated
- Vegetation irrigation efficient in the **suburbs**
- Pavement watering only efficient in the **city center**
- Need to **adapt watering practices on population location**
Conclusions

- Vegetation needs to be irrigated
- Vegetation irrigation efficient in the **suburbs**
- Pavement watering only efficient in the **city center**
- Need to **adapt watering practices on population location**

- Vegetation irrigation: **long term** and **global** solution for future **reactive cities**
Conclusions

- Vegetation needs to be irrigated
- Vegetation irrigation efficient in the **suburbs**
- Pavement watering only efficient in the **city center**
- Need to **adapt watering practices on population location**

- Vegetation irrigation: **long term** and **global** solution for future **reactive cities**
- Pavement watering: **emergency** practice with local effects
Conclusions

- Vegetation needs to be irrigated
- Vegetation irrigation efficient in the **suburbs**
- Pavement watering only efficient in the **city center**
- Need to **adapt watering practices on population location**

- Vegetation irrigation: **long term** and **global** solution for future **reactive cities**
- Pavement watering: **emergency** practice with local effects
- Water storage in summer conditions?
Vegetation needs to be irrigated
Vegetation irrigation efficient in the **suburbs**
Pavement watering only efficient in the **city center**
Need to **adapt watering practices on population location**

Vegetation irrigation: **long term and global** solution for future **reactive cities**
Pavement watering: **emergency** practice with local effects

Water storage in summer conditions?
What type of vegetation to be used?
Any Questions?

References

Viguié et al. 2014, *Technological Forecasting and Social Change*
Masson 2000, *Boundary-Layer Meteorology*
Takahashi et al. 2010, *Sustainable techniques and strategies in urban water management*
Kounkou et al. 2014, *Météorologie (in French)*