Cities as urban clusters: an empirical and large sample study of urban heat island intensity

Bin Zhou, Diego Rybski, Jürgen P. Kropp

Potsdam Institute for Climate Impact Research

Toulouse

July 21, 2015
Table of Contents

1 Introduction

2 Data and Methods

3 Results

4 Conclusion
Status quo of empirical Urban Heat Island (UHI) study

- Inconsistency and instability with regard to urban-rural definition
- Based on individual or a few case study cities.
- Lack of systematic analyses
- ...
Introduction

Status quo of empirical Urban Heat Island (UHI) study

- Inconsistency and instability with regard to urban-rural definition
- Based on individual or a few case study cities.
- Lack of systematic analyses
- ...

Questions addressed in this study

- **Question 1**: Whether and to what extent the city size determines the UHI intensity?
- **Question 2**: Seasonal variations of surface UHI.
- **Question 3**: Whether similar patterns exist in site-specific UHI characteristics? How are they geographically distributed?
Introduction

Theoretic basis

- Land Surface Temperature (LST)
- Urban cluster identification
- Land Use
- Reality

MODIS, CORINE
Table of Contents

1. Introduction
2. Data and Methods
3. Results
4. Conclusion
Data & Methods

CORINE Land Cover & Urban Morphological Zones 2006
- 38 European countries at 250 m
- 44 land cover types are reclassified into binary urban/non-urban ones.

MODIS Land Surface Temperature (LST)
MYD11A2 data: 8-day mean at local time
~ 13:30 & ~ 01:30
Spatial resolution: ~1 km
Temporal coverage: 2006-12
Data & Methods

CORINE Land Cover & Urban Morphological Zones 2006
- 38 European countries at 250 m
- 44 land cover types are reclassified into binary urban/non-urban ones.

MODIS Land Surface Temperature (LST)
- MYD11A2 data: 8-day mean at local time ~ 13:30 & ~ 01:30
- Spatial resolution: ~1 km
- Temporal coverage: 2006-12

(a) Urban cluster identified by the City Clustering Algorithm (CCA) for the Greater London Area.
(b) LST for the same area as in (a) captured by the MODIS Aqua at 13:30 (02/07/2006 – 09/07/2006).

\[
\Delta T = T_C - T_B \quad (\text{coverage} \geq 50\%)
\]

B. Zhou, D. Rybski, J. P. Kropp (PIK) Zhou@pik-potsdam.de
Data & Methods

CORINE Land Cover & Urban Morphological Zones 2006
- 38 European countries at 250 m
- 44 land cover types are reclassified into binary urban/non-urban ones.

MODIS Land Surface Temperature (LST)
- MYD11A2 data: 8-day mean at local time \(\sim 13:30 \& \sim 01:30 \)
- Spatial resolution: \(\sim 1 \) km
- Temporal coverage: 2006-12

Definition of UHI intensity
\[
\Delta T = \overline{T_C} - \overline{T_B} \quad (\text{coverage} \geq 50\%)
\]
Table of Contents

1 Introduction

2 Data and Methods

3 Results
 - UHI Intensity and City Size
 - UHI intensity and Surrounding Temperature
 - Observed and modelled seasonality
 - Regional Patterns

4 Conclusion
UHI Intensity (ΔT) and City Size (S_C)

(UHII as a function of S_C and seasonal variability. Typical dependence for (a) summer days and (b) winter days.)
UHI Intensity (ΔT) and City Size (S_C)

UHI as a function of S_C and seasonal variability. Typical dependence for (a) summer days and (b) winter days.

Logistic model:

$$\Delta T = \frac{a}{1 + \left(\frac{S_C}{b} \right)^{-c}}$$

Asymptote \circ
Inflection \circ
Steepness \circ

• positive correlation both in summer and winter
• more pronounced UHI in summer, which can be well fitted by the empirical logistic model.
• max. up to 3 $^\circ$C in summer (Jun-Aug) and down to 0.5 $^\circ$C in winter (Dec-Feb).
UHI Intensity (ΔT) and City Size (S_C)

UHI as a function of S_C and seasonal variability. Typical dependence for (a) summer days and (b) winter days.

Logistic model:

$$\Delta T = \frac{a}{1 + \left(\frac{S_C}{b} \right)^c}$$

- Asymptote \bigcirc
- Inflection \bigcirc
- Steepness \bigcirc
- 95% CI
- Binned average $\pm \sigma$

- positive correlation both in summer and winter
- more pronounced UHI in summer, which can be well fitted by the empirical logistic model.
- max. up to 3 °C in summer (Jun-Aug) and down to 0.5 °C in winter (Dec-Feb).

Time series of the parameter a.

B. Zhou, D. Rybski, J. P. Kropp (PIK)
zhou@pik-potsdam.de
July 21, 2015, ICUC9
Diversity in urban climate: UHI versus Urban Oasis Effect

UHI characteristics of individual city clusters and hysteresis-like curves:

(a) Paris
(b) Milan
(c) Madrid
(d) Nicosia

UHI intensity (ΔT) and surrounding temperature (T_B)
Observed and modelled seasonality

Is the seasonality of UHI intensity based on 2 m air temperature (T2m) consistent with that in LST?
– Greater London Area as a case study

Combination of observation and simulation

• Observed weather stations
 – St. James Park (urban), Charlwood (rural)
• Urban boundary layer climate model - UrbClim [De Ridder et al., 2015]
 – A simple and time fairly alternative for computation-intensive urbanized mesoscale climate models.
 – Bulk parameterization of the urban surface energy balance, coupled to a 3-D atmospheric boundary layer scheme
 – Validated in Toulouse, Ghent, Antwerp, and Bilbao

More details of UrbClim in:

Koen De Ridder, Dirk Lauwaet, Bino Maiheu (2015),

Observed and modelled seasonality

* The inset icons denote how ΔT is calculated: areal average versus station-based.
Observed and modelled seasonality

* The inset icons denote how ΔT is calculated: areal average versus station-based.
Table of Contents

1 Introduction

2 Data and Methods

3 Results

4 Conclusion
Conclusion

- A general framework to conduct systematic statistical assessment of UHI via an automatic urban cluster identification algorithm.

- Logistic relationship between UHII and city size (more pronounced in summer than in winter)

- Urban boundary layer model (UrbClim) can reproduce the hysteresis in the surface UHI intensities, while in the observed and modeled 2 m air temperature, the phenomenon is absent.

- Various UHI characteristics across Europe. Efforts to identify regional patterns of UHI, based on Hysteresis-like curves, suggest a climatological basis.
Thank you for your attention!

More details in:

Methods

City cluster identification – City Clustering Algorithm (CCA)

CCA with threshold distance $l = 2c$.

<table>
<thead>
<tr>
<th>total No. of city clusters</th>
<th>$>130,000$</th>
</tr>
</thead>
<tbody>
<tr>
<td>area >13 km2 (=200 cells)</td>
<td>$>2,000$</td>
</tr>
</tbody>
</table>

large city clusters

- Flemish Diamond
- Paris
- London
- Milan
- Ruhr
- Berlin...

Boundary identification: Boundary area (S_B) ≈ 1.0 Cluster area (S_C)
Hysteresis of UHI intensity for the London city cluster comparing the empirical MODIS values with the ones obtained from the constant short-wave radiation (SR) experiment.
Influence of Boundary/Cluster ratio on the UHI intensity

The larger the ratio, the smaller the UHI intensity.
Summertime (June-July-August) mean LST averaged over 6 years (2006-2011) for the Greater London Area.
Classification of city clusters

Step 1: Fourier approximation

- ΔT
- T_B
- AIC

Step 2: K-means clustering

- Fourier coefficients
- Z-score
- $\Delta T: g_0 g_1 h_1$
- $T_B: g_0 g_1 h_1$

- 7 Groups
- Silhouette