

Demonstrating the Added Value of WUDAPT for Urban Modelling

Johannes Feddema University of Victoria

This research is supported by the Office of Science (BER), U.S. Department of Energy, Cooperative Agreement No. DE-FC02-97ER62402, by the National Science Foundation grant numbers ATM-0107404, and ATM-0413540, by NASA SIMMER project, the NCAR Weather and Climate Impact Assessment Science Initiative, and the University of Kansas, Center for Research.

to © 2005 Sanborn

Representing urban areas in ESMs: e.g. CLMU

33 Regions With Similar Urban Character

Urban land cover

Difference

Defining Urban Classes (US)

Low Density

Medium Density

CBD

High Density

Variables required by the model

Global Urban Properties

Creating the CLMU input dataset (Version 2)

Urban Heat Island Comparison: Parameterization Sensitivity

Peter Lawrence

NCAR

Assessing how a change in one urban property impacts energy consumption

Motivation:

"If you look at all the buildings and if you make the roofs white and if you make the pavement more of a concrete type of colour rather than a black type of colour and if you do that uniformally, that would be the equivalent of... reducing the carbon emissions due to all the cars in the world by 11 years – just taking them off the road for 11 years,"

U.S. energy secretary, Professor Steven Chu, highlighting research by Akbari et al. [2009] who calculated that increasing the albedo of urban roofs and pavements globally could produce a negative radiative forcing equivalent to a 44 Gt CO2 emission offset [TimesOnline, 2009].

White Roof Experiment

White roof - Control simulations of the urban heat island (urban minus rural air temperature) for 1980-1999 annual (ANN), DJF, and JJA climatology (°C). Land areas displayed in white are grid cells that have zero urban fraction in the model.

White Roof Experiment: Change in Global Energy Demand

Figure 4. Zonal means of ALB minus CON simulations of urban space heating (HEAT) and air conditioning (AC) energy for 1980-1999 annual, DJF, and JJA climatology (gigawatts).

Conclusion:

The globally averaged annual air conditioning demand decreases from 0.09 TW in the CON simulation to 0.02 TW in the ALB simulation, while space heating demand increases from 5.61 TW to 6.30 TW. Thus, the total **global energy demand increases by 0.62 TW** from 5.70 TW to 6.32 TW.

Improved facet representation (e.g. windows)

Policy choices with respect to windows

Policy choices with respect to wall types

Brick (veneer) wall

Siding wall

CLMU and sensitivity analyses

Some consideration about this approach

- This a top down approach to gather urban properties
 - Very generalized
 - Arbitrary regions
- Need better information on building types and materials
- Need data from under-represented regions
- Need to put more thought into how the models are used and how to improve assessment that incorporates input information

- Replace the 3 urban classes with LCZ types as appropriate
- Link LCZs to walls by region based on currently identified regional wall types
- Use GeoWiki to get better idea of common wall and window types
- Use GeoWiki to get socio economic and cultural norms (temperature settings; land use layer information – irrigation and other urban features)

Creating the CLMU input dataset (Version 3?)

Urban Function

Variable	Pt/area	priority	metric	Source	LCZ estimate	Aggre gation	Existing Proxy data
Building Use Commercial/Residential/ Industrial/Office/Mixed etc.	Point	High	Drop down choice/other	Subjective	No		
Irrigation	Point	Medium	Yes/no	Subjective	No		satellite
Road type (main artery etc)	Point	Low	Drop down choice/other	Subjective	No		
Temperature setting	Point	High	Tmin/Tmax (°C) or F	Subjective	No		
Occupancy	Point	Low		Subjective	No		
Practices: AC	Point	High	Yes/no	Subjective	No		
Practices: Shutters/shading	Point	Medium	Drop down choice/other	Subjective	No		
Practices: Window opening	Point	Low	Yes/no	Subjective	No		
Building age	Point	Medium	date	Subjective	No		
Building renovation ?Post 1990?	Point	Medium	Yes/no	Subjective	No		

Urban Form: Cover

Variable	Pt/area	priority	metric	Source	LCZ estimate	Aggre gation	Existing/ Proxy data
Building fraction	Area	High	No. Floors/Ht. of floor				satellite
Vegetated fraction	Area	High	Fraction/percent				satellite
Road fraction	Area	High	Fraction/percent				
Water fraction	Area	High	Fraction/percent				satellite
Vegetation organization Street trees/ garden/ agriculture etc	Point	Medium	Drop down choice/other (type)	Photo			satellite
Vegetation type	Point	Medium	Drop down choice/other (PFT)	Photo			satellite

Urban Form: Geometry (WUDAPT)

Variable	Pt/area	priority	metric	Source	LCZ estimate	Aggregati on	Existing/ Proxy data
LCZ	Area	High					
Height	Point	High	No. Floors/Ht. of floor	Photo	No		
Width of Streets	Point	Medium	meters	Photo	Yes		
Contiguous/iso lated buildings	Point	Medium	Yes/Now	Photo	Yes/No		
Roof geometry	Point	Low	Drop down choice/other	Photo	No		

Urban Form: Material

Variable	Pt/area	priority	metric	Source	LCZ estimat e	Aggregat ion	Existing/ Proxy data
Wall type	Point	High	Drop down choice/other	Subjective	No		
Roof type	Point	High	Drop down choice/other	Subjective	No		
Window type	Point	Medium	Drop down choice/other	Subjective			
Road type	Point	Low	Drop down choice/other	Subjective			
Window fraction on wall	Point	Medium	Fraction/perc ent	Subjective			
Color/Albedo	Point	Medium	Drop down choice/other	photo			

Validation

What are some issues that the modeling community has with respect to validation?

- Representative rural areas?
- UHI <u>climatologies</u>
- Satellite vs other temperature metrics

Influence of anthropogenic heat flux and rural vegetation type on simulations

Maximum annual heat island intensity (urban minus rural air temperature) produced by the urban model for a North American mid-latitude site (40N, 75W) compared to Oke (1981) (Equation 1). Model results are shown for no anthropogenic flux (no anthro flux), with anthropogenic flux (anthro flux), and with anthropogenic flux and rural site modeled as needleleaf evergreen tree (anthro flux, rural needleleaf evergreen tree).

Validation – Surface air temperature observations From Stewart and Oke 2012 and other source

Conditions

- Need to be published in peer reviewed articles
 Need to be climatological (at least one month of observations)
 - If appropriate monthly observations are aggregated to seasonal and annual if seasonal/annual data are not reported

Validation – Satellite temperature observations 419 cities from Ping et al. 2012

Validation – satellite

Conditions

- 419 cities from Ping et al. 2012
 - Daytime and nighttime observations reported
- For now average daytime and nighttime observations (consider passover times)
- See Hu et al. for potential other issues with these data (time of day and observation angle)

Regions for which data are aggregated

Results

Measured UHI (S = Satellite; O=Air Temperature)

Questions?