# EXPLOITING EARTH OBSERVATION DATA PRODUCTS FOR MAPPING LOCAL CLIMATE ZONES

Zina Mitraka<sup>1,3</sup>, Nektarios Chrysoulakis<sup>1</sup>, Jean-Philippe Gastellu-Etchegorry<sup>2</sup>, Fabio Del Frate<sup>3</sup>

- <sup>1</sup> Foundation for Research and Technology Hellas, Greece
- <sup>2</sup> Centre d'Etudes Spatiales de la BlOsphère
- <sup>3</sup> University of Rome Tor Vergata, Italy





## LOCAL CLIMATE ZONES (LCZ)

Urban Landscape

looded Fields

Orchards

& Vineyards

Bare Fields

Cropped Fields

City

Modern Core

Old Core

Compact Housing

Industrial

Extensive Lowrise

Regular Housing

(treed/open)

Agricultural

Natural

Mixed



explicitly define the urban landscapes according to their thermal properties

LCZ

**OPEN LOW-RISE** 

6

#### DEFINITION

Form: Small buildings 1–3 stories tall. Buildings detached or attached in rows, often in grid pattern. Sky view from street level slightly reduced. Construction materials vary (wood, brick, stone, tile). Scattered trees and abundant plant cover. Low space heating/cooling demand. Low traffic flow. Function: Residential (single or multi-unit housing, low density terrace/row housing); commercial (small retail shops). Location: City (medium density); periphery ("suburbs"). Commuter towns. Rural towns. Correspondence: UCZ5 (Oke 2004); Do3 (Ellefsen 1990/91).



200

300

400

## THE EO4SEB PROJECT

Earth Observation for Surface Energy Balance

### Objectives:

- > to exploit EO to derive parameters related to LCZ;
- to investigate the potential of exploitation of recent (Landsat-8 and Sentinel-2) and upcoming (Sentinel 3) missions in SEB modelling;
- > to use derived EO products to parameterize DARTEB model.

Landier, L. et al. *Modeling Parameters and remote sensing acquisition of urban canopies* 

Thursday 15:00 - 16:00, Poster Session 25





Heraklion



## THE URBANFLUXES PROJECT

Urban Anthropogenic heat flux from Earth Observation **S**atellites

### Objective:

> to investigates the potential of EO to retrieve anthropogenic heat flux, as a key component in the Urban Energy Budget

Chrysoulakis, N. et al. A novel approach for anthropogenic heat flux estimation from space

Friday 11:00 - 12:30, St-Exupéry Amphitheater













Base









http://urbanfluxes.eu





## **METHODOLOGY**



### SKY-VIEW FACTOR

Sky-view factor the fraction of sky hemisphere visible from ground level

### Remote Sensing data

high resolution stereo imagery or LiDAR data

Lindberg, F. and Grimmond, C.S.B., 2010. Continuous sky view factor maps from high resolution urban digital elevation models. Climate Research, 42, 177-183.



Stereo imagery



Digital Surface Model



Sky-view factor

### BUILDING DENSITY

Building Density
 the proportion of ground surface with building cover

### Remote Sensing data

high resolution optical imagery and/or LiDAR data and/or SAR data

Esch, T., Thiel, M., Schenk, A., Roth, A., Müller, A. and Dech, S., 2010. Delineating of urban footprints from TerraSAR-X data by analyzing speckle characteristics and intensity information. IEEE Transactions on Geoscience and Remote Sensing, 48, 905 - 916.



## IMPERVIOUS, PERVIOUS SURFACE COVER

> Impervious and Pervious Surface Fraction the proportion of ground surface with impervious and pervious cover

### Remote Sensing data

high resolution multispectral/hyperspectral imagery

Mitraka, Z., Chrysoulakis, N., Kamarianakis, Y., Partsinevelos, P. and Tsouchlaraki, A., 2012. Improving the estimation of urban surface emissivity based on sub-pixel classification of high resolution satellite imagery. Remote Sensing of Environment, 117, 125 - 134.







## MEAN BUILDING, TREE HEIGHT

Mean Building/Tree Height the spatial average of building heights in an area of interest

### Remote Sensing data

high resolution stereo imagery or LiDAR data or SAR data



## SURFACE ALBEDO

Surface Albedo the surface ability to reflect the incoming direct and diffused irradiance at all wavelengths and towards all possible angles

### Remote Sensing data

high resolution optical imagery

Frey, C. M. and Parlow, E., 2009. Geometry effect on the estimation of band reflectance in an urban area. Theoretical and Applied Climatology, 96, 395 – 406.





## LCZ PARAMETERS ESTIMATION USING EO DATA



## IDENTIFYING THE LCZ



- multiple sources of information result in products of different scales
- need for a common scale to proceed with the identification of possible LCZ
- parameters were aggregated in a 90 m × 90 m cells grid and
- a 5 × 5 cells circular moving window was considered, since the minimum diameter of a LCZ is 400 – 1000 m

## LCZ CLASSIFICATION



Blue corresponds to LCZ3 – Compact low rise and green to LCZ6 – Open low rise.

### LCZ3 – Compact low rise

High angle





Low level





LCZ6 – Open low rise

High angle





Low level





## LCZ CLASSIFICATION

### LCZ3 – Compact low rise

- attached or closely spaced building area
  - small buildings (1-3 stories tall)
- > tightly packed along narrow streets
- > sky view significantly reduced
- heavy construction materials used
- > land cover mostly paved and hard-packed
- > few or no trees

### LCZ6 – Open low rise

- small buildings (1-3 stories tall)
- > sky view slightly reduced
- > construction materials vary
- > scattered trees and abundant plant cover

Blue corresponds to LCZ3 – Compact low rise and green to LCZ6 – Open low rise.

### LCZ3 – Compact low rise

High angle





Low level





LCZ6 – Open low rise

High angle





Low level





## CONCLUSIONS AND OUTLOOK

- > EO data can be used to quantify the set of metadata necessary to identify the LCZs of urban areas
- Individual EO products, as well as the LCZ classification itself, can be used to urban climate modeling and studies with ultimate goal to assist urban planning and decision making
- > Future research includes the *investigation of more urban* parameters extraction using EO data
- The ultimate goal is to develop *a methodology, adapted to the Copernicus Sentinels*, to standardize the LCZ mapping



