First steps toward a comparison of modelled thermal comfort during a heatwave in Melbourne, Australia

Stephanie Jacobs

PhD supervisors: Ailie Gallant and Nigel Tapper
Outline of talk

Motivation for research
 – Heatwaves
 – Urban heat island mitigation

Model validation
 – Soundings
 – Gridded observational data
 – Weather station data

No urban areas experiment
Motivation

Heatwaves \Rightarrow heat stress \Rightarrow high \textit{overnight} temperatures have greatest effect on health

50\% of world's population lives in cities \Rightarrow Urban Heat Island effect \Rightarrow cities \textit{hotter at night} than rural areas

UHI mitigation \Rightarrow Green roofs, white roofs, increased irrigation \Rightarrow cooler cities \Rightarrow cooler citizens
Research aims

Model best configuration of UHI mitigation infrastructure in Melbourne during a heatwave to improve human thermal comfort

– Will use WRF to model the heatwave
– First step: model validation
First case study

Jan 28-30 2009 heatwave over Melbourne

374 excess deaths, 714 hospital admissions for heat stress

3 days above 43°C, record at the time

1 night above 30°C
Region of study

Melbourne, population of 4 million
Second largest city in Australia
One of the best combinations of physics schemes for southeastern Australia on seasonal (Evans et al. 2011) and sub-daily timescales (Evans and Westra 2012)
Data and domains

Put ERA Interim (Dee et al. 2011) 0.7° x 0.7° data into WRF ➔ dynamically downscale it to Melbourne area using nested domains

Resolutions: ERA Interim 77km ➔ domain 1 (10km) ➔ domain 2 (2km)

Simulations run for three days with the first day discarded as model spin up.
Single layer urban canopy model (Kusaka et al. 2001)

– Add in low, medium and high density urban categories to MODIS land surface

Land Use Category	Land Use Description
1 | Evergreen Needleleaf Forest
2 | Evergreen Broadleaf Forest
3 | Deciduous Needleleaf Forest
4 | Deciduous Broadleaf Forest
5 | Mixed Forests
6 | Closed Shrublands
7 | Open Shrublands
8 | Woody Savannas
9 | Savannas
10 | Grasslands
11 | Permanent Wetlands
12 | Croplands
13 | Urban and Built-up
14 | Cropland/Natural Vegetation Mosaic
15 | Snow and Ice
16 | Barren or Sparsely Vegetated
17 | Water
18 | Wooded Tundra
19 | Mixed Tundra
20 | Barren Tundra
31 | Low density urban
32 | Medium density urban
33 | High density urban

(Chen et al. 2011)
Modelling the 3 day heatwave

– Showing from 11pm Jan 27 2009 - 10am Jan 31 2009 AEDT
Compare WRF soundings to observations

– Observations are in black, WRF is in pink. Daytime temperature profile very good
– WRF is too moist at the surface and in the boundary layer during the day
Compare WRF to gridded observations

– WRF (2kmx2km) compared to Australian temperature gridded observational data set (5kmx5km)
– WRF minimum temperature is too high, WRF maximum temperature is too low
WRF does not capture diurnal variability during heatwave, potentially due to soil being too moist.

This results in a larger RMSE.

A longer spin up time does not decrease the soil moisture.
Experiment: no urban surfaces

- Urban land surface category removed with nearest neighbour method
- Mostly croplands (olive green) and evergreen broadleaf forest (dark green)
- See how much urban effects or geography impact heatwave in Melbourne
No urban surface experiment

– Minimum temperatures would be 1-3°C colder during the hottest night of the heatwave

Difference in 2m temperature at 3am
Jan 29 2009
Conclusions

– WRF can accurately simulate from the boundary layer to the top of the atmosphere during a heatwave

– WRF maximum temperatures are *too low* compared to observations

– WRF minimum temperatures are *too high* compared to observations

– WRF cannot replicate the diurnal temperature variability, though this will be improved with better soil moisture data

– When the urban areas are removed can see that minimum temperatures in Melbourne would be 1-3°C colder
Future work

– We will model the effectiveness of green infrastructure (green roofs, white roofs) in Melbourne during the heatwave

– We will find the best configuration of infrastructure to improve human thermal comfort on a city wide scale

– We plan to dynamically downscale CMIP5 GCM model data and repeat these experiments using future scenarios to test the resilience of the infrastructure to weather systems from the FUTURE
Acknowledgments

Thank you very much to Carlo Jamandre, Melissa Hart, Daniel Argueso from the University of New South Wales for their help in setting up the WRF runs

Thank you to Blair Trewin for providing observational weather station data

References:
3 month spin up, CORDEX/NARCLiM domains

50km

2km

10km

Melbourne AP and Model Sounding