

Urban heat island and inertial effects: analyse from field data to spatial analysis

<u>Jérémy BERNARD</u>⁽¹⁾, Marjorie Musy, Isabelle Calmet, Erwan Bocher, Pascal Kéravec

(1) IRSTV / CRENAU

Data are recorded for 4 years

Data are recorded for 4 years

8 TRH stations

Data are recorded for 4 years

8 TRH stations

2 Meteo-France (MF) stations

Station	location	sampling time	sensor accuracy
TRH	mostly on walls	15 mins	+- 0,3 K
MF	open sites	1h – linear interpolation every 15 mins	+- 0,1 K

Climate indicators calculation

Symbol	Indicator name	Unit	Time period	Equation
Δt	Time shift	mins	sunset+4h →	Index when the cross-correlation
			sunset+8h	function is maximum
Cr	Cooling rate	°C/h	sunset → sunset+4h	mean temperature derivative difference
UHIn	Night-time Urban Heat Island	°C	all day	mean temperature difference

Climate indicators calculation

- → A reference is used for each indicator calculation :"MF_Boug"
- Calculations are performed for each day

Symbol	Indicator name	Unit	Time period	Equation
Δt	Time shift	mins	sunset+4h → sunset+8h	Index when the cross-correlation function is maximum
Cr	Cooling rate	°C/h	sunset → sunset+4h	mean temperature derivative difference
UHIn	Night-time Urban Heat Island	°C	all day	mean temperature difference

Filtering

Filtering Sorting

Filtering Sorting Filtering

Calculated indicators:

- Average building height
- Linear of facade density
- Open space area
- Building volume density
- Facade density
- Vegetation density
- **→** Equivalent admittance

Symbol	Name	Formula
D_{Flin}	Linear of facade density	$rac{\displaystyle\sum_{i}p_{i}}{A_{r\!e\!f}}$
ADM	Equivalent admittance	$\mu_{a} \cdot (D_{\mathit{Flin}} \cdot h_{w} + \frac{a_{\mathit{ai}}}{A_{\mathit{ref}}}) + \mu_{\mathit{vh}} \cdot \frac{a_{\mathit{vhi}}}{A_{\mathit{ref}}} + \mu_{\mathit{vl}} \cdot \frac{a_{\mathit{vli}}}{A_{\mathit{ref}}}$

Calculated indicators:

- Average building height
- Linear of facade density
- Open space area
- Building volume density
- Facade density
- Vegetation density
- → Equivalent admittance

A_{ref}: buffer circle area (m²)

p_i: perimeter of the building i

 a_{vh_i} : area taken by the high vegetation i

a_{vli}: area taken by the low vegetation i

a_{bgi}: area taken by the bare ground i

a_a: area taken by the artificial surface i

 $\mu_a = 700$, $\mu_{vl} = 175$, $\mu_{vh} = 350$:

thermal admittance for artificial surfaces, low vegetation and high vegetation (J.m⁻².s^{-1/2}.K⁻¹)

h_w = 3 : wall height to consider as influent on the air temperature at screen height

Wind speed classification

(Spring)

Wind speed (m/s)

Wind speed classification

(Spring)

Wind speed (m/s)

Nebulosity classification

(Spring)

Nebulosity (octas)

Nebulosity classification

(Spring)

Nebulosity (octas)

Interclimatic indicators regression

Interclimatic indicators regression

- → The slope of the regression is modified by the season and the weather conditions
- → R^2 is good (most of the time > 0,6) 0,94 and 0,90 between UHIn and Cr respectively for summer and autumn time (clear and calm conditions)
 - ⇒ the 4 hours after sunset seem decisive for UHI formation

UHIn versus geographical indicators

UHIn versus geographical indicators

Further improvements

- Climatic measurement:
 - → Increase the number of measurement sites (currently too low for good regression analysis)

Further improvements

Climatic measurement :

- → Increase the number of measurement sites (currently too low for good regression analysis)
- Use poles far from urban surfaces for sensor location
- → Improve the knowledge about shield issues

Further improvements

Climatic measurement:

- → Increase the number of measurement sites (currently too low for good regression analysis)
- Use poles far from urban surfaces for sensor location
- Improve the knowledge about shield issues

- Geographical part: evaluate the influence on the results of:
 - → The size and the shape (LCZ, buffer circle, city block defined from road network) choice of the spatial reference unit;
 - → The accuracy of the data (remote sensing image resolution) and the errors led by the use of different sources of data

Acknowledgements

Thank you for your attention!

Work supported by

- French Environment and Energy Management Agency (ADEME)
- AgroCampus Ouest (ACO) school
- → Region des Pays de la Loire

Special thanks to :

- OrbisGIS team for their technical support (http://www.orbisgis.org/about/the-team/)
- Meteo-France for the availability of their measurement data

Wind speed classification

Nebulosity classification

