Performance standard for tropical outdoors: A proposal in a time of climate change

ICUC9 – ID2 23 Jul 2015

R Emmanuel

Outline

- The coming airconditioning armagedon
 - Cities, climate change and the overheating problem in tropics
- Cooling load issues
 - Key issues in cooling load management
- Current impasse in climate-sensitive design
 - Technical
 - Governance
 - Cultural
- Where do we go from here?
 - Three strategies
 - Two approaches

"it (air conditioning) changed the nature of civilization by making development possible in the tropics" (Lee Kwan-Yew, 2009)

Airconditioning armageddon

History of misalignment

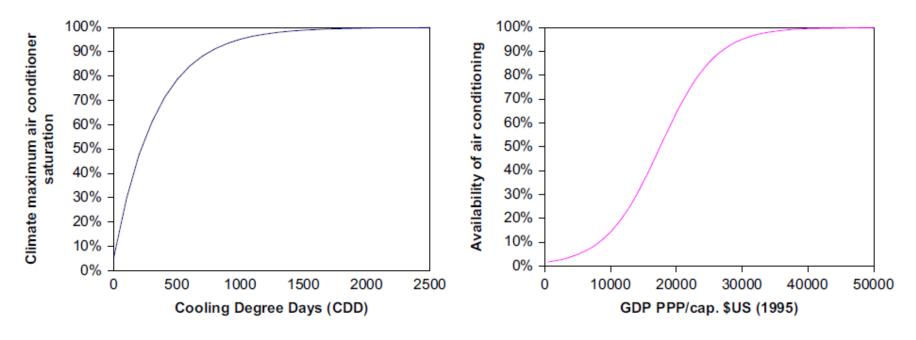
- Strategies developed for heating-only (or heating/cooling mode) climate don't work at all in the tropics
- Miasma theory and its continuing effects
- Current orthodoxy doesn't work:
 - Higher humidities in the tropics warrant design for higher wind movement to be the design priority;
 - Thermal comfort in the tropics depends more on air movement than on the reduction of solar radiation;
 - Night-time cooling occurs in the tropics

Global space heating/cooling trends

	2010	2020	2030	2040	2050
Pacific OECD ¹	126.1	122.4	119.1	116.0	113.4
N America	147.5	138.4	131.0	124.9	119.7
W Europe	128.3	123.1	118.4	114.2	110.4
Central & E Europe	152.6	148.1	144.8	141.8	139.1
Former Soviet Union	205.1	198.4	194.5	191.6	189.0
Latin America	63.3	60.2	59.5	59.3	59.6
Sub-Saharan Africa	56.2	53.4	52.9	53.0	53.4
Middle East and N Africa	55.6	55.1	56.0	57.4	58.0
Centrally Planned Asia ²	37.4	41.2	43.8	46.8	47.5
South Asia	60.1	77.1	85.0	89.2	88.2
Other Pacific Asia ³	46.4	45.5	45.6	45.9	46.5

¹Australia, Japan, New Zealand

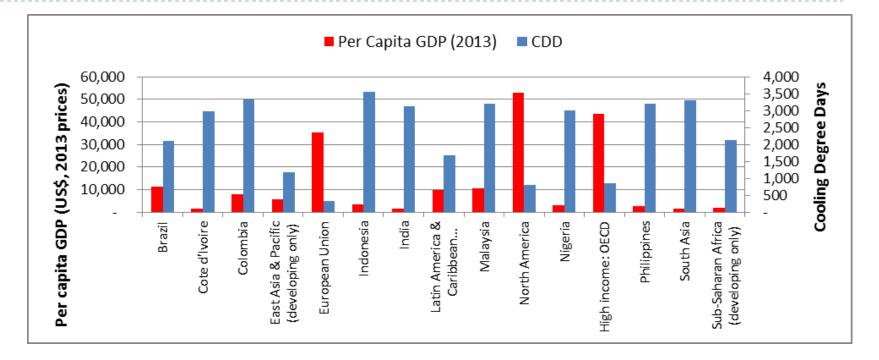
²Cambodia, China (incl. Hong Kong), Korea (DPR), Laos (PDR), Mongolia, Viet Nam


³Southeast Asia and the Pacific Island states

Source: Based Ürge-Vorsatz et al., 2015

01

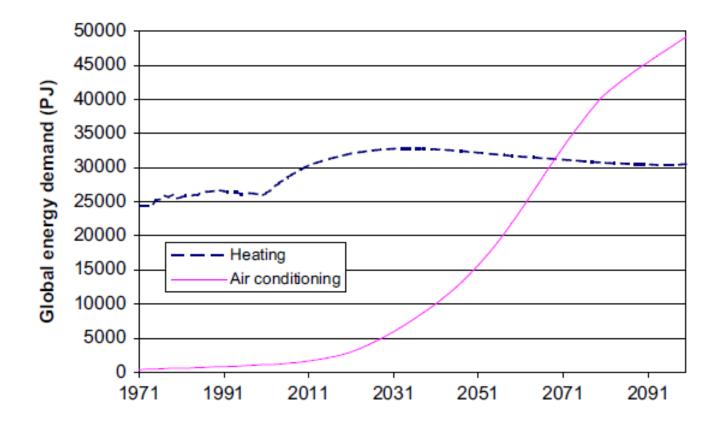
Saturation of air conditioning



MAXIMUM AIR CONDITIONER SATURATION:

(left) as a function of climate and, (right) as a function of income

Source: Isaac and Van Vuuren, 2009


Income vs cooling load

Source: Emmanuel, 2015

ICUC9 – ID2

Proliferation of air conditioning use

Source: Isaac and Van Vuuren, 2009

Coming A/c armageddon

- Much of the global heating demand is already manifest in energy demand whereas much of the global cooling demand is still latent;
- Greater improvement in heating efficiency has already occurred whereas technological development and efficiency improvements in cooling are yet to be achieved;
- Greater economic development leads to more appliance use, which leads to greater internal gain, necessitating a lowering of threshold temperature at which cooling is demanded

Cooling load issues

Why is cooling more problematic?

- Need to tackle increases in both the sensible and latent loads
- Use of A/c makes the urban situation worse
- Heating could be provided by a variety of lower carbon fuels while cooling is largely electricity-based
- Much of global heating demand is already manifest while cooling load is yet to be witnessed
- Global warming potential of refrigerants

Current impasse

03

Key issues

Technical

- Tropics (especially the urban tropics) have warmed to an extent that passive, building-level strategies to tackle it have been more or less exhausted
- 'Traditional' solutions may no longer work
- Institutional / Governance issues
 - Climate-sensitive design is not a high priority in tropics
 - Institutional arrangements needed to embed it in planning
 - Whose priority?
- Cultural
 - Thermal indulgence
 - Issues with C-S D as an 'elite' project

Going forward: Lessons

Key strategies

- Reformulate 'thermal pleasure' (Hwang et al., 2009)
- Link in 'in' with 'out'
- Adaptive opportunities formulated by activities

Reformulation of thermal pleasure

- Partially shaded pathways
- Strategically placed and adequate vegetation cover
- Water misting

	Average Range	Standard Deviation	
Thermal sensation	+2.71 to - 0.35	0.94	
Comfort sensation	-1.41 to + 1.82	1.03	
Wettedness Sensation	+0.82 to 1.56	1.21 to 0.86	

Source: Farnham et al., 2015

Linking the 'in' and the 'out'

- Express performance standards in terms of percentage reduction over the contextual surroundings
- Reflect the purpose for which thermal comfort standards are being promulgated
 - Subject's thermal sensitivity
 - Accuracy required for carrying out the task
 - Practicality of thermal control
 - Difference between indoor and outdoor conditions to be achieved

Adaptive opportunities by activity patterns

- Shopping streets
- Gathering places
- Provision for evening life
- Pedestrian paths and nodes (cf. Emmanuel, 2005)

References

- Emmanuel R, 2005. An Urban Approach to Climate Sensitive Design: Strategies for the Tropics, London: E&FN Spon Press
- Emmanuel R, (ed.) 2015. Urban Climate Challenges in the Tropics: Rethinking Design Opportunities, London: Imperial College Press (forthcoming)
- Farnham C, Emura K, Mizuno T. 2015. Evaluation of cooling effects: outdoor water mist fan, *Building Research & Information*, **43**:3, pp. 334-345
- Hwang R.-L, Cheng M.-J, Lin T.-P, Ho M.-C. 2009 Thermal perceptions, general adaptation methods and occupant's idea about the trade-off between thermal comfort and energy saving in hot—humid regions, *Building and Environment*, 44, 6, pp 1128-1134,
- Isaac M, van Vuuren DP, 2009. Modeling global residential sector energy demand for heating and air conditioning in the context of climate change, *Energy Policy*, **37**, pp 507-521

References

- Lee, KY. 2009. The East Asian way with air conditioning, New Perspectives Quarterly, 26(4), pp 111-120, available at <u>http://www.digitalnpq.org/archive/2009_fall_2010_winter/16_yew.html</u>
- Ürge-Vorsatz D, Luisa F. Cabeza, Susana Serrano, Camila Barreneche, Ksenia Petrichenko, Heating and cooling energy trends and drivers in buildings, *Renewable* and Sustainable Energy Reviews, 41, pp 85-98