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1. The Australian Town Energy 2. Interface heat storage/
Budget scheme (aTEB) conduction scheme
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« aTEB to be coupled with « Researchers want a flexible
mesoscale climate model to assess climate
models: Impacts in various cities:

o can not slow down climate o urban geometry/ materials
scale runs o vegetation (lawn, trees, roofs)

o must be as efficient as o anthropogenic heat flux
surrounding land surface tiles o air flow / dispersion
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(bulk surface properties) (distinct surface properties)
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Thatcher and Hurley (2012)

o Obs: Melbourne 2003-2004
(Coutts et al. 2007)

Temperature PDF
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Luhar et al. (2014)

o Obs: Basel 2002
(BUBBLE) (Rotach et al. 2005)

Sensible Heat PDF
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Sensible Heat Flux (W/m?2)

« Thatcher and Hurley (2012)  Luharetal (2014)
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Hourly Fluxes (12 month mean) at Preston, Melbourne
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Hourly Fluxes (12 month mean) at Preston, Melbourne
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Storage heat flux:

« often regarded as the key process in the genesis of urban
heat island (Grimmond and Oke 1999)

 butis difficult to measure, therefore often calculated as a
residual, so errors from other fluxes accumulate

« notwithstanding measurement uncertainty, 31/32 models
participating in the urban intercomparison phase 2 had
negative bias for storage heat flux; ensemble mean absolute
error was largest of the fluxes (Grimmond, pers. commes)

Broader implicationse
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Discretised 1D heat diffusion equation (lumped capacitance model)
Layer 1 Layer 2 Layer 3

Half-layer scheme
Current aTEB
(R-C-R)

Interface scheme
Proposed
(C-R-C)

Comparing models
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« Assumptions:
o 24 hr periodic temperature forcing on one side
o Fixed temperature on the other, average of forcing
o Fixed external and internal surface heat transfer coefficients
o Planar heat tfransfer (homogenous layers, no cavities, no thermal bridges)

Periodic Thermal Admittance Periodic Thermal Transmittance
externali i internal externali i internal )
A Y2> .
T | Y~
L 2 . I //\
¥
| b/
2 2
g1 - g2
Temperature Y= Temperature | Yoy = — o=
Heat flux density T ————— Heat flux density 1

Comparing models
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Test our discretised models against an exact solution

where @y = (Jand ¢, = (.

« Numerical Method (as in aTEB): e 07 [« 'Sf
o Tridiagonal solver for N layer system s ; . 2 B dz
(Thomas Algorithm) S - -
O
L 0 Iy bn 1_ _Iﬂ_ _dﬂ_

« Analytical Method:

o ‘Admittance procedure’ calculates exact solution to heat tfransfer in a
composite system of homogenous layers, including surface resistances.

o Temperature and heat flux of each side is related via heat tfransfer matrix.
o Method documented in ISO13786:2007. Zoystom

T\ _( Zu Zin\ (T
g2 Zo1 L2 1
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Comparing models
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Cyclic Heat Storage Flux @ 1 min timesteps
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Cyclic Heat Storage Flux @ 1 min timesteps
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Cyclic Heat Storage Flux @ 30 min timesteps
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Cyclic Heat Storage Flux @ 30 min timesteps
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Cyclic Heat Storage Flux @ 30 min timesteps
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Cyclic Heat Storage Flux: 4 layer composite wall
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Cyclic Heat Storage Flux: 4 layer composite wall
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Cyclic Heat Storage Flux: 4 layer composite wall 010
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Cyclic Heat Storage Flux: 4 layer composite wall
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_Cyclic Heat Storage Flux: 30 minute timesteps
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Mean Bias Error (MBE) @ 30min Mean Absolute Error (MAE) @ 30min
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Comparing schemes: average errors
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Conclusions:

« although heat storage not evaluated as offen as other fluxes,
(because of observational uncertainty) getting heat storage
right is crifical in simulating the important urban processes

« aTEB’s current scheme, along with other models, generally
underestimate storage heat flux, affecting other fluxes

e interface conduction scheme is closer to exact solution with
chosen assumptions — yet to see impact in full model

~4 |layers
SIMPLE €«=-=------ T —————— > REALISTIC

ADEQUATE

Conclusions
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Discretised 1D heat diffusion equation (lumped model)

T (T — Tep)
or 0G Tt — T}
C By, = 7 — C@AZU At — Gzn — Gout

Resistance and capacitance

W R-C-R network
l . 05R, 05R | l
g
| . s > C-R-C network
| | RI | |

0.5C; 0.5C;

A closer look at the conduction scheme
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o N

Heat transfer matrix: ( ? ) — ( Z11 2 ) ( 13 >

(ISO13786:2007)

1 _Rse 1 _Rsz'
Zsystem : ( 0 1 ) LN LN Ly Ly ( 0 1 )

Layer heat fransfer matrix elements:

VR — cosh(%)cos(

SqlisH

) —l—jsinh(g)sin(%) = Z99

A= {Smh

c>'7|&.
Sgliss
Salis®

)}

Zo1 = —— {smh % cos(%) — cosh(%)sz’n(%) +j [sinh(%)cos(%) + cosh(%)sin(%)}}

)cos(2) + cosh(2)sin(2) + j [cosh(%)sin(2) — sinh(%)cos(

where periodic penetration depth: d =4/ Q—Zc

Analytical solution to periodic heat transfer
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« Storage heat flux (G or AQ,): rural and urban site observations

Cleugh and Oke (1986)
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Importance of heat storage in urban sites

Grimmond and Oke (1999)

“The storage heat flux ... is
a significant component
of the energy balance”

“Often regarded as the
key process in the genesis
of urban heat islands”




’ Adequately and efficiently representing heat Mathew Lipson | UNSW

. Meli Hart | UNSW
conduction and storage for urban surfaces Moo Sl Hart B

« Thatcher and Hurley (2012) « Luharetal (2014)
o Obs: Melbourne 2003-2004 o Obs: Basel 2002 (BUBBLE)

(Coutts 2007) o Focus on flow and dispersion
o Focus on canopy temperature, in the urban boundary layer
wind and partitioning of fluxes

Boundary-Layer Meteorol (2012) 142:149-175
DOI 10.1007/s10546-011-9663-8

Atmospheric Environment 88 (2014) 47-58

X
ATMOSPHERIC
ENVIRONMENT

ARTICLE Contents lists available at ScienceDirect

Atmospheric Environment

Simulating Australian Urban Climate in a Mesoscale
Atmospheric Numerical Model journal homepage: www.elsevier.com/locate/atmosenv

Marcus Thatcher - Peter Hurley
Evaluating a building-averaged urban surface scheme in an ®Cmm

operational mesoscale model for flow and dispersion
Ashok K. Luhar’, Marcus Thatcher, Peter ]. Hurley

Centre for Australian Weather & Climate Research, CSIRO Marine and Atmospheric Research, PMB 1, Aspendale, Victoria 3195, Australia

Received: 21 December 2010 / Accepted: 6 October 2011 / Published online: 29 October 2011
© Springer Science+Business Media B.V. 2011 HIGHLIGHTS

« A building-averaged urban canyon scheme in a mesoscale model is evaluated.
. « This scheme simulates the observed near-neutral to weakly unstable conditions at night.
Abstract We develop an urban canopy scheme coupled to a mesoscale atmospheric «In contrast, the original slab scheme predicts weakly stable conditions at night.

numerical model and evaluate the simulated climate of an Australian city. The urban canopy + A better representation of the observed dispersion by the building-averaged scheme.
h ) o o « Computational efficiency of the canyon scheme is on par with the slab scheme.

scheme is based on the Town Energy Budget approach, but is modified to efficiently represent

the predominately suburban component of Australian cities in regional climate simulations.

Energy conservation is improved by adding a simple model of air-conditioning to prevent ARTICLE INFO ABSTRACT
the urban parametrization acting as an energy sink during the Australian summer. In-canyon Aticle history: A recently developed building-averaged urban surface scheme as coupled to an operational mesoscale
vegetation for suburban areas is represented by a big-leaf model, but with a largely reduced Received 9 October 2013 model, TAPM, is evaluated for both flow and tracer dispersion using data from the 2002 Basel UrBan

> A i N Received in revised form
set of prognostic variables compared to previous approaches. Although we have used a recir- 22 January 2014
Accepted 24 January 2014

Boundary Layer Experiment (BUBBLE) conducted in the city of Basel, Switzerland. This scheme is based
on the so-called town energy balance (TEB) approach and simulates turbulent fluxes using a generic

culation/venting based parametrization of in-canyon turbulent heat fluxes that employs two canyon geometry to resolve energy balances for walls, roads and roofs. Air conditioning to close the
= . 3 eI SinoT: . ientati averasi building energy budget, in-canyon vegetation, and the effects of recirculation and venting of air within
a y a aging . P . pars

canyon wall energy b“dge?5~ b dvuldousmg a _ﬁxed canyon orientation by averaging the ﬁf{‘;‘)’]’ﬁm dispersion the canyon on turbulent fluxes are included. Comparison is also made with the original urban surface
canyon fluxes after integrating over 180° of possible canyon orientations. The urban canopy BUBBLE daa P scheme of TAPM based on a simple slab approach with separate urban and vegetation—soil tiles and a
scheme is evaluated by simulating the climate for Melbourne, Australia after coupling it to TAPM model specified anthropogenic heat flux. The results show that the new scheme leads to an overall improve-
N N . ) R Town energy balance ment in the prediction of surface fluxes, and is able to reproduce the observed near-neutral to weakly

The Air Pollution Model. The combined system was found to predict a realistic climatology Urban boundary layer unstable conditions at night, which is a feature of urban meteorology. In contrast, the slab scheme
of air temperatures and winds when compared with observations from Environmental Pro- Turbulent fluxes predicts stable conditions at night. The observed concentration fields from the tracer experiments are
Mesoscale modelling better simulated using the new scheme, but because there were no nighttime tracer releases, the

tection Authority monitoring stations. The model also produced a plausible partitioning of capability of the new scheme under full diurnal conditions could not be demonstrated. For the appli-
the urban energy budget when compared to urban flux-tower studies. Overall, the urban can- cations considered here, the computational efficiency of the new scheme in TAPM is on par with the slab
yon parametrization appears to have reasonable potential for studying present and predicting BT

- X . N N X ) . Crown Copyright © 2014 Published by Elsevier Ltd. All rights reserved.
changes in future Australian urban climates in regional climate simulations.
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Hourly Fluxes (12 month mean) at Preston, Melbourne
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Hourly Fluxes (12 month mean) at Preston, Melbourne
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Even when tuned, heat storage an issue
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