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Adequately and efficiently representing heat 

conduction and storage for urban surfaces 

1. The Australian Town Energy 

Budget scheme (aTEB) 

2. Interface heat storage/ 

conduction scheme 

Introductions 
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Adequately and efficiently representing heat 

conduction and storage for urban surfaces 

• aTEB to be coupled with 

mesoscale climate 

models: 
o can not slow down climate 

scale runs 

o must be as efficient as 

surrounding land surface tiles 

 

• Researchers want a flexible 

model to assess climate 

impacts in various cities: 
o urban geometry/ materials 

o vegetation (lawn, trees, roofs) 

o anthropogenic heat flux 

o air flow / dispersion 

 

Model Aims 

SIMPLE REALISTIC 

ADEQUATE? 

(bulk surface properties) (distinct surface properties) 
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Town Energy Budget (TEB) Approach 
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Australian Town Energy Budget (aTEB) 
Thatcher and Hurley (2012) 
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Harman et al. (2004) 
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aTEB – The Australian Town Energy Budget 

Efficiency: 

18 month offline 

simulation @ 

30min timesteps ~ 

10 seconds on 

single CPU 
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Adequately and efficiently representing heat 

conduction and storage for urban surfaces 
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Sensible Heat PDF 

Flux Density (W/m2) 

Improvement over existing slab scheme 

2m Temperature (oC) 

Temperature PDF 

• Thatcher and Hurley (2012) 
o Obs: Melbourne 2003-2004 

(Coutts et al. 2007) 

• Luhar et al. (2014) 
o Obs: Basel 2002 

(BUBBLE)(Rotach et al. 2005) 
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Adequately and efficiently representing heat 

conduction and storage for urban surfaces 

• Thatcher and Hurley (2012) • Luhar et al. (2014) 
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Default parameters 
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Even when tuned, heat storage an issue 
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Storage heat flux: 

• often regarded as the key process in the genesis of urban 

heat island (Grimmond and Oke 1999) 

• but is difficult to measure, therefore often calculated as a 

residual, so errors from other fluxes accumulate 

• notwithstanding measurement uncertainty, 31/32 models 

participating in the urban intercomparison phase 2 had 

negative bias for storage heat flux; ensemble mean absolute 

error was largest of the fluxes (Grimmond, pers. comms) 

  

Broader implications? 
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Half-layer scheme 

Current aTEB 

(R-C-R) 

 

 

 

 

Interface scheme 

Proposed 

(C-R-C) 
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Comparing models 

Discretised 1D heat diffusion equation (lumped capacitance model) 
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Adequately and efficiently representing heat 

conduction and storage for urban surfaces 

• Assumptions: 
o 24 hr periodic temperature forcing on one side 

o Fixed temperature on the other, average of forcing 

o Fixed external and internal surface heat transfer coefficients 

o Planar heat transfer (homogenous layers, no cavities, no thermal bridges) 

 

 

 

Comparing models 
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Test our discretised models against an exact solution 

• Numerical Method (as in aTEB):  
o Tridiagonal solver for N layer system  

(Thomas Algorithm) 

 

 

• Analytical Method: 
o ‘Admittance procedure’ calculates exact solution to heat transfer in a 

composite system of homogenous layers, including surface resistances. 

o Temperature and heat flux of each side is related via heat transfer matrix. 

o Method documented in ISO13786:2007. 

 

 

 

 

Comparing models 
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Discetisation in space of homogenous wall 
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Discetisation in space of homogenous wall 
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interface 

half-layer 

Discetisation in space of homogenous wall 
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Discetisation in space of homogenous wall 

half-layer bias 



Adequately and efficiently representing heat 

conduction and storage for urban surfaces 

Mathew Lipson    UNSW 

Melissa Hart    UNSW 

Marcus Thatcher   CSIRO 

| 

| 

| 

interface bias 

Discetisation in space of homogenous wall 

half-layer bias 
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Discetisation in time of composite wall 
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Discetisation in time of composite wall 
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Discetisation in time of composite wall 
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interface and 

half-layer bias 

Discetisation in time of composite wall 
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interface: 

half-layer: 

MAE 

0.051 W/m2 

0.425 W/m2 

Discetisation used in aTEB (4 layer, 30 min) 

but this is just one wall… 
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Comparing schemes: average errors 

Properties from: 
Jackson et al. (2010) 
Grimmond et al. (2011) 
Loridan and Grimmond (2012) 
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• although heat storage not evaluated as often as other fluxes, 

(because of observational uncertainty) getting heat storage 

right is critical in simulating the important urban processes 

• aTEB’s current scheme, along with other models, generally 

underestimate storage heat flux, affecting other fluxes 

• interface conduction scheme is closer to exact solution with 

chosen assumptions – yet to see impact in full model 

 

 

 

 

 

 

SIMPLE REALISTIC 

ADEQUATE 

~4 layers 

Conclusions: 

Conclusions 
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Discretised 1D heat diffusion equation (lumped model) 
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Heat transfer matrix: 

 

 

 

 

Layer heat transfer matrix elements: 

 

 

 

 

 

 

where periodic penetration depth: 

Analytical solution to periodic heat transfer 

(ISO13786:2007) 
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• Storage heat flux (G or ∆Qs): rural and urban site observations  

Importance of heat storage in urban sites 
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Diurnal Cycle 

“The storage heat flux … is 

a significant component 

of the energy balance” 

 

“Often regarded as the 

key process in the genesis 

of urban heat islands” 

Grimmond and Oke (1999) 
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Adequately and efficiently representing heat 

conduction and storage for urban surfaces 

• Thatcher and Hurley (2012) 
o Obs: Melbourne 2003-2004 

(Coutts 2007) 

o Focus on canopy temperature, 

wind and partitioning of fluxes 

 

• Luhar et al. (2014) 
o Obs: Basel 2002 (BUBBLE) 

o Focus on flow and dispersion 

in the urban boundary layer 

aTEB published papers 
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Default parameters 
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Even when tuned, heat storage an issue 
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