Sensitivity analysis and optimization of an urban energy balance parameterization at a tropical suburban site

Suraj Harshan¹ Matthias Roth¹ Erik Velasco²

National University of Singapore¹ Singapore-MIT Alliance for Research and Technology²

ICUC9, Toulouse, 24th July 2015

Why need for urban canopy parametrizations?

- Higher frequency of extreme weather events (IPCC 2013)
- Cities take up only small fraction of earth's surface, but half of the human populations now live in cities, and this is expected to increase in the coming decades
- □ Combined effects of heat wave and UHI, have large socio-economic impacts, e.g. France 2003, excess of mortality (Masson 2006)
- Current CPU capabilities made it possible to run operational models in 1 Km resolutions, thus cities can be represented.
- Thus useful for mitigation, adaptation and planning

Motivation

- ❑ Most of the parametrizations were incorporated in to Meso-scale models without proper validation and more studies are needed
- Generally few urban climate studies from tropics (Roth 2006)
- Urban morphometric, radiative and thermal parameters are difficult to obtain
- Large number of input parameters make sensitivity analysis and optimization challenging but this is an urgent task
- Only few studies have been reported (Loridan et al. 2011, Wang et al. 2011)
- Implication for model development, design of field experiments, urban planning etc.

Method

Study Area

Telok Kurau

Forcing variables from measurements in the ISL • T, P, q, Precip, wind speed

Radiation Components

Long and shortwave radiation

Turbulent fluxes · Q_H, Q_E, ΔQ_S

Surface Temperature

TEB + ISBA m 68 input Parameter and 5 EX

SURFI

ranges Derived from local site (Velasco et al. 2013) and literature

Moigne 2012

SA First order, higher and total Ú interaction Sobol' Quantitative and accurate Computationally demanding

>200,000

Variance Based

n (k+2) ,translates to

Saltelli et al. 2004

OAT yet global **Morris SA** Average effect, non-linear Less FE r (k+1), translates to >30,000

Campolongo et al. (2008)

Hadaka & Reed 2013

Results- Sensitivity Analysis

Parameters	$Q_H(Dry)$	$Q_H(Wet)$	$Q_H(Mixed)$	$Q_E(Dry)$	$Q_E(Wet)$	$Q_E(Mixed)$	Q*(Dry)	Q*(Wet)	Q*(Mixed)
ALB_ROAD		0.05	0.06				0.11	0.11	0.12
ALB_ROOF	0.12	0.21	0.22		0.15		0.42	0.43	0.45
ALB_WALL							0.07	0.09	0.07
CLAY				0.07					
DG2	_			0.08		0.11			
TC_ROAD1	0.10	0.09	0.11						
TC_ROAD2	0.06								
TOWN		0.07		0.21	0.46	0.21			
WALL_O_HOR					0.06		0.24	0.20	0.22
WDRAIN						0.05			
XHUG_ROOT			0.08	0.41)	0.36			
Parameters	$Q_H(Dry)$	$Q_H(Wet)$	$Q_H(Mixed)$	$Q_E(Dry)$	$Q_E(Wet)$	$Q_E(Mixed)$	Q*(Dry)	Q*(Wet)	Q*(Mixed)
ALB_ROAD	0.09	0.06	0.07				0.13	0.11	0.12
ALB_ROOF	0.30	0.26	0.28		0.18		0.46	0.45	0.46
ALB_WALL			0.05				0.08	0.09	0.08
CLAY		0.05		0.11	0.06	0.08			
DG2				0.14		0.16			
HC_ROAD1	0.07								
RSMIN				0.08		0.07			
TC_ROAD1	0.22	0.15	0.15						
TC_ROAD2	0.14	0.08	0.08						
TC_ROOF2	0.05								
TC_WALL1	0.12	0.08	0.06						
TC_WALL2	0.06								
TOWN	0.05	0.11		0.26	0.50	0.27			
WALL_O_HOR	0.06				0.07		0.27	0.22	0.23
WDRAIN				0.08		0.11			
XHUG_ROOT	0.11		0.11	0.50		0.46			

$$S_{Ti} \ge \%5$$

Sobol' vs. Morris

National Univ

Results- Optimization

	Defat	ılt RI	MSE	Optimized RMSE			
$Q_H(Wm^{-2})$	4	27.89		22.43			
$Q_E(Wm^{-2})$	4	44.33		39.52			
$Q * (Wm^{-2})$		27.58		12.98			
$\Delta Q_S(Wm^{-2})$	ļ	53.74		46.87			
$K\uparrow(Wm^{-2})$	1	17.00		20.92			
$L\uparrow (Wm^{-2})$:	33.34		16.60			
$T_{surf}(^{0}C)$		3.70			1.60		
		-	-				
	Default	Min	Max	Median	Optimized		
ALB_ROAD	0.08	0.06	0.25	0.20	0.25		
ALB_ROOF	0.20	0.08	0.16	0.11	0.09		
ALB_WALL	0.50	0.05	0.09	0.07	0.09		
CLAY	0.47	0.34	0.77	0.67	0.70		
DG2	1.50	1.68	3.74	3.67	3.66		
TC_ROAD1	1.64	1.56	2.10	2.08	2.10		
TC_ROAD2	2.10	1.36	2.10	2.09	2.10		
TOWN	0.85	0.75	0.77	0.75	0.75		
WALL_O_HOR	0.66	0.95	1.10	1.10	1.10		
WDRAIN	0.00	0.00	0.05	0.00	0.01		

Conclusions

- Only 16 parameters showed greater than 5 % variance and
- Sum of first order indices are lesser than sum of the total order indices (interaction)
- **Q**^{*} is easier to model with less parameter interaction
- \Box Larger number of parameters showed influence in Q_H
- □ Morris methods may be trustable alternative to Sobol' GSA
- □ Accurate soil moisture initialization is crucial
- □ Albedo, town fraction were in general, the most dominant
- Seasonal dependency of parameter sensitivity and convergence indicates some inadequacies of the parametrization
- \Box Q_H, Q_E and Q* pairs show trade-off
- Optimization experiment showed some skill in reducing model errors, however often parameters converges to non-feasible values

Questions ?

