School of the Built Environment and Department of Meteorology



ICUC9, Toulouse, France, July 2015

# Modelling anthropogenic heat flux in urban climate models: capturing agency

## Stefan Smith, Sue Grimmond, Helen Ward, Simone Kotthaus, Alex Björkegren Fredrik Lindberg, Leena Järvi

Acknowledgments: EUf7 emBRACE, NERC TRUC, Met Office, UK-China Research & Innovation Partnership Fund/ Met Office Climate Science for Service Partnership (CSSP) China /Newton Fund.

Copyright University of Reading

LIMITLESS POTENTIAL | LIMITLESS OPPORTUNITIES | LIMITLESS IMPACT

## Anthropogenic Heat Flux

Waste heat discharged by human activities



Iamarino et al. (2012) Int. J. Climatology

## Wiversity of Reading

#### Sources

 $Q_R$ - short & long wave radiation received internally

- Q<sub>F,M</sub> metabolism
- Q<sub>F,T</sub> transport
- $Q_{\rm F\!,B}-buildings$

#### Sinks

- Sensible heat
- Latent heat
- Waste water

#### Timing of heat release

- Instantaneous
- Lagged

#### Location of heat release

- Building openings: vents, windows
- Building materials: walls, roof
- Vehicles

## **City/ Country Goals**



- Reduce carbon emissions
  - City design
    - Travel to work can be reduced
    - Solar access
    - Building materials/standards
    - Sources of energy
    - Distance energy is transported (source/usage)
- Renewable energy
  - Requires rapid feedback
    - What can be stored
    - When is the peak demand
    - Modify energy peaks change some behaviours

## BACKGROUND



- Anthropogenic heat flux
  - Energy released from human activities
    - Buildings
    - Transportation
    - People

#### Decreasing importance/size



## **Total Anthropogenic Heat Flux**



- Can vary wildly across a large city at peak hours/days
  - From < 10 W m<sup>-2</sup> residential area
  - To > 1000 W m<sup>-2</sup> in the dense central business district area
- If we consider these values with other surface energy balance (SEB) fluxes
  - Measurements (errors, uncertainty, measurable terms)
  - Modelling (errors, uncertainty)
- Can be insignificant to the most significant term
  - Summer residential vs winter time high latitude business district



## Decisions

- Individual millions made every day
  - Impact: wide range of areas

#### Daily operations:

- Building operations
  - e.g. closing of the conference centre
  - i.e. Work hours
  - Acceptable temperature range
- Transport
- **Building** design decisions (can open windows? insulation? Encourage use of stairs?)
- **Planning** decisions (e.g. what is within the vicinity, transport networks)
- **City** (e.g. resilient systems? Energy infrastructure, Business/Industries)
- **Country** (e.g. Carbon neutral, energy infrastructure, natural resources)
- International (e.g. EU requirements, international agreements)

## Intersection of wide range of decisions – made over a large range of time scales – influencing wide range of spatial scales



## London: Anthropogenic Heat (W m<sup>-2</sup>) 2005-2008





#### Iamarino et al. (2012) Int. J. Climatology

Smith and Grimmond

## Modelling of Decisions



\*BESTEST - TRNSYS, but can change as modular code

+Comfort and activity as drivers by population type

Smith and Grimmond

July 2015: ICUC9

s.t.smith@reading.ac.uk

## Dynamic nature of $Q_F$



• When residential use start to increases

July 2015: ICUC9

Urban Energy – Water - Carbon

How to observe Q<sub>F</sub> - model comparison?





## Swindon: Estimate of anthropogenic emissions



M Human metabolism

**B** Building energy use

V Vehicles

Population data<sup>1</sup> Per capita emissions<sup>2,3</sup> UK fuel Consumption<sup>5</sup> Emission factors<sup>2</sup> Diurnal profile<sup>4</sup> Vehicle km in UK<sup>6</sup> Emission factors<sup>2,3,5</sup> Diurnal/weekly profiles<sup>6</sup>



<sup>1</sup>ONS; <sup>2</sup>Moriwaki & Kanda (2004) JAM; <sup>3</sup>Sailor & Lu (2004) AE; <sup>4</sup>Hamilton et al. (2009) B&E; <sup>5</sup>DECC; <sup>6</sup>DfT; <sup>7</sup>Schmid et al. (2000) AFM; <sup>8</sup>Flanagan et al. (2002) GCB

Ward et al. ACP 2013

## **Emissions Workdays/non-Workdays**







24 24 12 24 24 12 24 12 24 12 24 24 12 24 12 Env. Poll. Time [h] Ward et al. (2015)

<u>Smith and Grimmond</u>

July 2015: ICUC9

s.t.smith@reading.ac.uk

#### **Carbon Dioxide Fluxes and Emissions** Central London – Residential Swindon - Forest 😵 Reading Nov Mar Sep May July lan Apr May Jun Jul Aug Sep Oct Jan Feb Mar 100



Ward et al. (2015) Env. Pollution

University of

## **Building Sources Summer/Winter**

## Occupancy: High/Low High/Low $\Delta[CO_2]$ = Building vent - Tower top London





Bjorkegren & Grimmond

Smith and Grimmond

July 2015: ICUC9

s.t.smith@reading.ac.uk



\*BESTEST - TRNSYS, but can change as modular code

+Comfort and activity as drivers by population type

Smith and Grimmond

July 2015: ICUC9

## Two PhD positions available (UK - / EU – if been in UK for 3 + years)