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Two-phase nocturnal cooling
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Phase 1
« Site-dependent
* most intensive cooling
« driven by sensible heat and
longwave radiative
divergence (Holmer et al. 2007)

Phase 2
* site-independent
« gradually decreasing
 driven by raidative
divergence in a capping
iInversion above the canonpy
layer (Holmer et al. 2007)

modified from Oke (1986)
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ODbjectives

To develop a nocturnal cooling rate model to simulate air temperature
Investigating the temporal development of nocturnal cooling and the

relationship between cooling rates and meteorological variables and
building density.
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Dataset for model development

 Air temperature (2m) measured at an open site and four built-up
sites with little vegetation in Gothenburg during May-Sep in 1999.

« U (10m), Ta, clearness of the sky (K|, RH), from a nearby reference
station (SMHI).

« Average sky view factor within a 25 m radius calculated using digital
surface model and ArcMAP 10.1. R T
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A conceptual profile of nocturnal
cooling rate
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A conceptual profile of nocturnal
cooling rate
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A conceptual profile of nocturnal
cooling rate

Cooling rate (K h')
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A conceptual profile of nocturnal
cooling rate
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A conceptual profile of nocturnal
cooling rate
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Onset of phase 1A,1B and 2 (t;, t .. )

o

Phase 1A starts when relative wind
speed change drops below -0.2.
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Relative wind speed change

Phase 1A starts when relative wind
speed change drops below -0.2.

Phase 1B occurs when
the atmosphere turns from unstable
to stable.

tow =t + 1

peak
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Onset of phase 1A,1B and 2 (t;, t .. )
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Relative wind speed change

Phase 1A starts when relative wind
speed change drops below -0.2.

Phase 1B occurs when
the atmosphere turns from unstable
to stable.
tpeak - t1 + t2
Phase 2 starts 1 hr after relative

wind speed change drops below -
0.5.



UNIVERSITY OF
GOTHENBURG

Determination of CR .,
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Determination of CR .,

* clearness of the sky (CI) |» maximum daily air temperature (T,.,)

» wind speed (U)  sky view factor (SVF)

Cooling rate impact factor (CRIF)
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The relationship between CR,,, and T
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The impact of SVF on cooling rate
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Determination of CR
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Determination of CR, :
Cl—057 = *
CR, = CRZ_min + (CRZ_clear - CRZ_min) - 1—057 ;
CR; clear = —1.6 + 0.67 - U, e
CRy min = —0.34 + 0.03 - U, -
© ——Cl=0.96
Cl=0.57
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Fundamental equations

Phase 1A CR = (CRy —CRpeqx) * (cos(f(t —t;)) —1)/2 + CRy + ACR,, (1)
Phase 1B CR = (CR; —CRpeqi) - (€08 (f(t = tpear)) + 1)/2 + CRpeqic + ACR,, (1)

Phase 2  CR =-2="(CR, + ACR,,(t)

tend—t2

daytime cooling=——phase 1A ——phase 1B phase 2
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Model evaluation

Observational data from
— A open (SVF=0.92) site and a built-up (SVF=0.40) site in Gothenburg,Sweden
— A complex built-up (SVF=0.46) site in London, UK
during May — Sep in 2012 and 2014. The sites have little vegetation.
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Summary

* Aintra-urban nocturnal cooling model was developed based on the
concept of two-phase cooling.

* The model successfully estimates cooling rate under a wide range of
weather (Cl and U) condition as well as at sites of different building
densities.

Future work

« To be tested for other cities, e.g. lower latitudes and/or with very different
site characteristics.

« To take into account the impact of anthropogenic heat and latent heat
fluxes.

* To be used in climate application, e.g. human thermal comfort estimation.
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Two-phase nocturnal cooling
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Impact of cloudiness on CR
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Onset of phase 1A 1B and 2 (t, theaw 1)
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Wind speed (m 3-1) Cooling rate (K h'
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Wind speed (ms™') Cooling rate (K h'
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Wind speed (ms™') Cooling rate (K h'
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