

URBAN ANTHRPOGENIC HEAT FLUX FROM EARTH **OBSERVATION SATELLITES**

A novel approach for anthropogenic heat flux estimation from space

Nektarios Chrysoulakis & the URBANFLUXES Team

http://urbanfluxes.eu

ICUC9, Toulouse, July 24, 2015

Urban energy balance

 $Q^* + Q_F = Q_H + Q_E + \Delta Q_S + \Delta Q_A + S$

Roughness Sub-Laver

Urban Canopy Layer

- Q*: Net all-wave radiation balance
- > **Q**_F : Anthropogenic heat flux
- Q_H: Turbulent sensible heat flux
- Q_E: Turbulent latent heat flux²
- AQ_s: Net change in heat storage
- > $\Delta Q_A = Q_{in} Q_{out}$: Advective heat flux
- > S: All other sources and sinks

Why URBANFLUXES?

- > EO-1-2014: New ideas for Earthrelevant space applications
- Urban planning and Earth system science communities need spatially disaggregated Q_F.
- Not possible to derive it by *in- situ* flux measurements.
- The estimation of Q_F spatial patterns by current EO systems is a challenge.
- Major challenge: the innovative exploitation of the Copernicus Sentinels synergistic
 Opernations to estimate Opernations

urban climate • urban energy budget • anthropogenic heat flux • vehicular emissions • heating and cooling of buildings • industrial processing • metabolic heat release by people • heat storage • urban land cover • in-situ measurements • satellite remote sensing • Earth Observation data

The objectives

- to exploit EO to improve the accuracy of Q* and ΔQs calculation;
- to improve EO-based methods to cestimate Q_H and Q_E and to validate them using flux measurement by EC, or scintillometry;
 Roughness Sub-Layer
- to employ **energy budget closure** to estimate Q_F spatial patterns at city scale and local scale; Urban Canopy Layer
- to specify and analyse the uncertainties;
- > to evaluate the products comparing with independent methods;

The approach

The approach

> In-situ measurements:

Wireless network for high spatial resolution measurements of:

Surface temperature Air temperature Relative humidity Soil moisture/temperatur

The approach

> In-situ measurements:

Independent measurements of \mathbf{Q}_{E} and \mathbf{Q}_{H}

Eddy covariance from flux towers Large-aperture scintillometers

Local Climate Zones

La 112a 112a (j

Urban morphology

Relevant parameters: Sky View Factor (*SVF*), Building and vegetation heights (z_H , $z_{H(SD)}$, $z_{H(max)}$), Plan area index (λ_P), Frontal area index

Urban morphology

Urban surface characteristics

London

% Impervious Surface

Urban surface characteristics

bright tiles	metal I	asphalt I	lawn/meadow	clay	gravel
red tiles	metal II	asphalt II	trees I	sandy soil	tar
dark red tiles	metal III	asphalt III	trees II	bare soil	concrete

Urban surface temperature

(Mitraka et al. 2015)

Radiation balance (Q*)

DART: color composite reflectance image

Heat storage change (ΔQ_s)

ESTM (Element Surface Temperature Method):

- > Based on facet areas.
- Incorporates heat transfer between the different elements.
- > Estimated ΔQ_s represents unit plan are:

$$\Delta Q_{S} = \sum_{i} \frac{\Delta T_{i}}{\Delta t} (\rho C)_{i} \Delta x_{i} \lambda_{pi}$$
$$\rho C \frac{\partial T}{\partial t} = -\frac{\partial Q}{\partial x} = -\frac{\partial}{\partial x} \left(-k \frac{\partial T}{\partial x}\right)$$

Z_{m} Z_{H} $T_{s roof}$ T_{a} $T_{s wall}$ $T_{s road}$ $T_{s road}$ T_{fix} T_{fix} T_{fix} T_{fix}

Input data

Materials

Thermal conductivity Volumetric heat capacity Physical arrangement of elements \rightarrow view factors between elements T_s T_{air} inside and outside Soil temperature T_{fix} (where dT/dz = 0)

Heat storage change (ΔQ_s)

OHM (Objective Hysteresis Model):

) Contributions to ΔQ_{S} from multiple surface material types

Turbulent Heat Fluxes (Q_H, Q_E) > Aerodynamic Resistance Method (ARM)

Comparison with nonsatellite

(Source: lamarino et al. 2012)

The involvement of users

Visit URBANFLUXES website

http://urbanfluxes.eu

The vision

- To advance the current knowledge of the impacts of Q_F on UHI and hence on urban climate and energy consumption.
- To support the development of tools and strategies to mitigate these effects, improving thermal comfort and energy efficiency.
- To support the establishment of EO as a tool to help inform policy-making.
- > To develop EO-based services.

THE FRAMEWORK PROGRAMME FOR RESEARCH AND INNOVATION

HORIZ (2020)