A novel approach for anthropogenic heat flux estimation from space

Nektarios Chrysoulakis & the URBANFLUXES Team

http://urbanfluxes.eu

ICUC9, Toulouse, July 24, 2015
Urban energy balance

\[Q^* + Q_F = Q_H + Q_E + \Delta Q_S + \Delta Q_A + S \]

- \(Q^* \): Net all-wave radiation balance
- \(Q_F \): Anthropogenic heat flux
- \(Q_H \): Turbulent sensible heat flux
- \(Q_E \): Turbulent latent heat flux
- \(\Delta Q_S \): Net change in heat storage
- \(\Delta Q_A = Q_{in} - Q_{out} \): Advective heat flux
- \(S \): All other sources and sinks
Why URBANFLUXES?

› EO-1-2014: **New ideas** for Earth-relevant space applications

› Urban planning and Earth system science communities need **spatially disaggregated** Q_F.

› **Not possible** to derive it by *in-situ* flux measurements.

› The estimation of Q_F **spatial patterns** by current EO systems is a **challenge**.

› **Major challenge:** the innovative exploitation of the Copernicus Sentinels **synergistic** observations to estimate Q_F.
The objectives

› to exploit EO to **improve the accuracy** of Q^* and ΔQ_s calculation;

› to improve EO-based methods to **estimate** Q_H and Q_E and to **validate** them using flux measurement by EC, or scintillometry;

› to employ **energy budget closure** to estimate Q_F spatial patterns at city scale and local scale;

› to specify and analyse the **uncertainties**;

› to **evaluate** the products comparing with independent methods;
The approach
The approach

› In-situ measurements:

Wireless network for high spatial resolution measurements of:

Surface temperature
Air temperature
Relative humidity
Soil moisture/temperature
The approach

› In-situ measurements:

Independent measurements of Q_E and Q_H

Eddy covariance from flux towers

Large-aperture scintillometers
Local Climate Zones

LCZ3 – Compact low rise

LCZ6 – Open low rise

High angle

Low level
Urban morphology

- **Relevant parameters:** Sky View Factor (SVF), Building and vegetation heights (z_H, $z_{H(SD)}$, $z_{H(max)}$), Plan area index (λ_P), Frontal area index (λ_F)

![Digital surface model (DSM) of Basel](image1)

![Building density of Basel based on GUF data (100 m grid)](image2)
Urban morphology

› Urban Multi-scale Environmental Predictor (UMEP)
Urban surface characteristics
Urban surface characteristics

- bright tiles
- metal I
- asphalt I
- lawn/meadow
- clay
- gravel
- red tiles
- metal II
- asphalt II
- trees I
- sandy soil
- tar
- dark red tiles
- metal III
- asphalt III
- trees II
- bare soil
- concrete
Urban surface characteristics
Urban surface temperature

(Mitraka et al. 2015)
Radiation balance (Q*)

DART: color composite reflectance image

Urban canyon

DARTEB: hourly wall temperature
Heat storage change (ΔQ_s)

ESTM (Element Surface Temperature Method):

- Based on facet areas.
- Incorporates heat transfer between the different elements.
- Estimated ΔQ_s represents unit plan area.

\[
\Delta Q_s = \sum_i \frac{\Delta T_i}{\Delta t} (\rho C)_i \Delta x_i \lambda_{pi}
\]

\[
\rho C \frac{\partial T}{\partial t} = -\frac{\partial Q}{\partial x} = -\frac{\partial}{\partial x} \left(-k \frac{\partial T}{\partial x} \right)
\]

Input data
- Materials
 - Thermal conductivity
 - Volumetric heat capacity
- Physical arrangement of elements
 - View factors between elements
- T_s
- T_{air} inside and outside
- Soil temperature T_{fix} (where $dT/dz = 0$)

(Source: Offerle et al., 2005)
Heat storage change (ΔQ_s)

OHM (Objective Hysteresis Model):

- Contributions to ΔQ_s from multiple surface material types
- EO-derived dQ^*/dt (e.g., Yu et al., 2008)

\[
\Delta Q_s = \sum f_i a_{1,i} Q^* + f_i a_{2,i} \frac{dQ^*}{dt} + f_i a_{3,i}
\]

Parameters specific to land cover class
Turbulent Heat Fluxes (Q_H, Q_E)

- Aerodynamic Resistance Method (ARM)

\[
Q_H = \rho c_P \frac{T_S - T_{air}}{r_a}
\]

\[
Q_E = \rho c_P \frac{e_S - e_{air}}{\gamma (r_a + r_s)}
\]

From EO (WP 4 & 5)
Measured in-situ

Aerodynamic resistance

Vapour pressures

Surface resistance
Depends on vegetation type, moisture conditions
Comparison with non-satellite

(Source: Iamarino et al. 2012)
The involvement of users
Visit URBANFLUXES website

http://urbanfluxes.eu
The vision

› To advance the current knowledge of the impacts of Q_F on UHI and hence on urban climate and energy consumption.

› To support the development of tools and strategies to mitigate these effects, improving thermal comfort and energy efficiency.

› To support the establishment of EO as a tool to help inform policy-making.

› To develop EO-based services.