## A Mobile Sensor Network to Map CO<sub>2</sub> in Urban Environments

Joey Lee<sup>1</sup>, Andreas Christen<sup>1</sup>, Zoran Nesic<sup>2</sup>, & Rick Ketler<sup>1</sup>

Department of Geography<sup>1</sup> Department of Land and Food Systems<sup>2</sup> The University of British Columbia

9th International Conference on Urban Climate Toulouse, France July 24, 2015

#### **Overview**

 We present a pilot study to show the potential for a mobile sensor network to monitor greenhouse gas concentrations and to derive emissions in cities.



|                    |                       |                                               | Non-<br>Net-su<br>Net-su             |
|--------------------|-----------------------|-----------------------------------------------|--------------------------------------|
| sensor development |                       | mapping emissions: methods                    |                                      |
| design →           | testing $\rightarrow$ | measurement<br>campaign                       | calculated<br>emissions              |
|                    |                       | traffic counts &<br>building energy →<br>data | generate<br>emissions<br>inventories |



mapping emissions: results

observed mixing ratios & emissions inventory data per 100m grid cell

calculated emissions VS. emissions inventory

observed mixing ratios VS. emissions inventory

#### PRELIMINARY RESULTS

#### **RESEARCH QUESTION**

# Can we map greenhouse gases, specifically $CO_2$ , at a spatial resolution of neighborhoods / blocks across the city with a network of mobile sensors?

 Cities are a major source of GHGs into the atmosphere (Estimated 70%, Rosenzweig 2010).

- Cities are a major source of GHGs into the atmosphere (Estimated 70%, Rosenzweig 2010).
  - Currently there are a lack of tools to monitor CO<sub>2</sub> emissions in cities; existing tools are limited by funding, time, expertise, spatial & temporal resolution.

- Cities are a major source of GHGs into the atmosphere (Estimated 70%, Rosenzweig 2010).
  - Currently there are a lack of tools to monitor CO<sub>2</sub> emissions in cities; existing tools are limited by funding, time, expertise, spatial & temporal resolution.
  - There's a need to validate fine scale emissions inventories.

- Cities are a major source of GHGs into the atmosphere (Estimated 70%, Rosenzweig 2010).
  - Currently there are a lack of tools to monitor CO<sub>2</sub> emissions in cities; existing tools are limited by funding, time, expertise, spatial & temporal resolution.
  - There's a need to validate fine scale emissions inventories.

#### **Emerging** Opportunities...

- Rise of flexible (open source), compact technologies.
- Enhanced access to mobility services/platforms

# But how do you go from concentrations to emissions?

## **Proposed Approach:** Using the aerodynamic resistance (with a number of assumptions!)



Sensible heat flux & temperature are used to calculate the aerodynamic resistance for heat. Surface temperature is calculated with a radiometer at the surface. Assuming that the aerodynamic resistance of  $CO_2$  and heat are the same, the flux is computed.

## The Mobile Sensor System

#### System Components



1. IRGA – Licor LI-820 (Licor Inc, Lincoln, NB, USA), 2. Adafruit GPS (Adafruit Industries, Manhattan, NY, USA), 3. Arduino Mega (Arduino CC, Ivrea, Italy) . \*Not Shown: OneWire Digital Temperature Thermometer (Maxim Integrated One Wire Digital Temperature Sensor - DS18B20, San Jose, CA, USA )

• Runs on 12 V Power supply

- Runs on 12 V Power supply
- Measures CO<sub>2</sub> mixing ratios (ppm), geoposition and speed, and air temperature at 1-second intervals.

- Runs on 12 V Power supply
- Measures CO<sub>2</sub> mixing ratios (ppm), geoposition and speed, and air temperature at 1-second intervals.
- Size: 35.8 cm x 27.8 cm x 11.8 cm, weight: 2.6 kg.

- Runs on 12 V Power supply
- Measures CO<sub>2</sub> mixing ratios (ppm), geoposition and speed, and air temperature at 1-second intervals.
- Size: 35.8 cm x 27.8 cm x 11.8 cm, weight: 2.6 kg.
- Precision: +/- 1.1 ppm

- Runs on 12 V Power supply
- Measures CO<sub>2</sub> mixing ratios (ppm), geoposition and speed, and air temperature at 1-second intervals.
- Size: 35.8 cm x 27.8 cm x 11.8 cm, weight: 2.6 kg.
- Precision: +/- 1.1 ppm
- Accuracy: +/- 3 ppm, with maximum drift of +/- 4 ppm over seven days.

- Runs on 12 V Power supply
- Measures CO<sub>2</sub> mixing ratios (ppm), geoposition and speed, and air temperature at 1-second intervals.
- Size: 35.8 cm x 27.8 cm x 11.8 cm, weight: 2.6 kg.
- Precision: +/- 1.1 ppm
- Accuracy: +/- 3 ppm, with maximum drift of +/- 4 ppm over seven days.
- Total delayed response time: 13 s with 3 m sample tube at flow rate of 700 cc/min.

#### **Built & Tested: 5 mobile systems**



Image: In total 5 sensors were built – the image shows the full setup including the sample inlet tube and the temperature probes.

## Mapping Emissions -Methods: Measurement Campaign

May 25<sup>th</sup>, 2015

#### Study Area: 12.7 km<sup>2</sup> transect, Vancouver, BC



Image: 12 km<sup>2</sup> transect study area in Vancouver, BC. The transect is 1km x 12.7km covering the major land cover types in the city. Sunset Urban Climate tower is shown in orange.

#### Study Area: Tour of Vancouver



Video: A tour of Vancouver during the measurement campaign as seen through a dashboard camera. Local climate zones include Forest – A, compact midrise, compact high rise, compact lowrise, and open lowrise

#### Study Area: Meteorology - May 25th, 2015



#### Measurement period: 10:30 - 14:00 With convective and steady weather

- $T_{air} = 20^{\circ} 22^{\circ} C$
- Winds: 2.5 m/s
- Cloudless

\* data measured at 30m Urban Climate Tower "Vancouver Sunset" (SE section of Transect)

#### Sampling Methods: Vehicle Installation



Image A: Shows the temperature probe covered by PVC tube and reflective tape and sample inlet tube at 2m height -  $\pm 0.5$ °C Accuracy from -10°C to +85°C; Image B: Shows sensor installation in vehicle.

#### Sampling Methods: Bike Installation



Image: Shows the installation of the sensor on a bike rack – the inlet is at approximately 2m height.

#### Sampling Methods: Deployment Transects



Image: The image shows 5 planned transect routes for the measurement campaign. Goal: to cover (almost) all navigable roads (and some trails) along the transect in 3.5 hours.

## Pilot Study - Mapping CO<sub>2</sub> Emissions: Results

#### **Raw Data: Visualized in Google Earth**



#### **Average CO<sub>2</sub> Mixing Ratios per 100m Grid Cell**



## **Calculated Emissions:** Concentrations to Emissions



Image: Calculated emissions map generated using the aerodynamic resistance approach using CO<sub>2</sub> concentration measurements.

## Mapping Emissions -Methods: Emissions Inventory

### **Traffic Emissions Inventory**



Image: The traffic emissions inventory derived from Vancouver's traffic count data and calculated per grid cell using fuel consumption and emissions factors.

process: traffic emissons inventory

#### **Building Emissions Inventory**



Image: Building emissions inventory generated by combining factors of building morphology, urban context, and population density derived from LiDAR, building topology, and census data.

#### CO<sub>2</sub> Mixing Ratios Vs. Traffic Emissions Inventory



Trafficl CO<sub>2</sub> Inventory ( kg CO<sub>2</sub> hr<sup>-1</sup> ha<sup>-1</sup> ) - log

### CO<sub>2</sub> Mixing Ratios Vs. Total Emissions Inventory



Total  $\text{CO}_2$  Inventory ( kg  $\text{CO}_2$  hr<sup>-1</sup> ha<sup>-1</sup> ) - log

#### Calculated CO<sub>2</sub> emissions vs. Traffic Emissions Inventory



#### Calculated CO<sub>2</sub> emissions vs. Building Emissions Inventory



#### Calculated CO<sub>2</sub> emissions vs. Total Emissions Inventory



Calculated CO<sub>2</sub> Emissions Vs. Total CO<sub>2</sub> Inventory (Traffic + Buildings)

• A mobile CO<sub>2</sub> sensing system was developed using open source components.

- A mobile CO<sub>2</sub> sensing system was developed using open source components.
- The system was tested in Vancouver and evaluated against traffic and building emissions inventories.

- A mobile CO<sub>2</sub> sensing system was developed using open source components.
- The system was tested in Vancouver and evaluated against traffic and building emissions inventories.
- The study shows the potential for pervasive mobile sensing in GHG and pollutant monitoring in cities.

- A mobile CO<sub>2</sub> sensing system was developed using open source components.
- The system was tested in Vancouver and evaluated against traffic and building emissions inventories.
- The study shows the potential for pervasive mobile sensing in GHG and pollutant monitoring in cities, but relies on specific conditions and assumptions.

- A mobile CO<sub>2</sub> sensing system was developed using open source components.
- The system was tested in Vancouver and evaluated against traffic and building emissions inventories.
- The study shows the potential for pervasive mobile sensing in GHG and pollutant monitoring in cities, but relies on specific conditions and assumptions.
- Currently exploring visualization & feedback opportunities for planning and open science.

- A mobile CO<sub>2</sub> sensing system was developed using open source components.
- The system was tested in Vancouver and evaluated against traffic and building emissions inventories.
- The study shows the potential for pervasive mobile sensing in GHG and pollutant monitoring in cities, but relies on specific conditions and assumptions.
- Currently exploring visualization & feedback opportunities for planning and open science.
- Collaboration potential with local mobility providers for long term & spatially extensive/ intensive monitoring

## **Acknowledgements & Funding**

- NSERC Discovery Grant
- NSERC CREATE Terrestrial Ecosystems Research and World Wide Education & Broadcast Program (TerreWEB).
- UBC Geography Department, Ron Kellett, & Les Lavkulich
- Benedikt Groß, 47Nord GmBH, & Moovel Labs
- Measurement Campaign Drivers: Alex McMahon, Andreas Christen, Mark Richardson, & Thea Rodgers.
- ICUC & IAUC
- Data: OpenStreetMap.org, Vancouver Open Data, EPiCC Project, UBC Micrometeorology
- Tools: Python, R, QGIS, GDAL/OGR, Processing

References

- Van der Laan, "Scaling Urban Energy Use and Greenhouse Gas Emissions through LiDAR", MSc Thesis, 2011.
- Rosenzweig, C., Solecki, W., and Hammer, S. A. (2010). Cities lead the way inclimate-change action. Nature, pages 1–3.

## Special thanks to Andreas, Zoran, and Rick.

# The slides & links can be found on github:

#### joeyklee.github.io/presentations/ ICUC-JLEE-2015

# Thanks! Questions? Comments?

Many thanks to ICUC organizers and community.

#### **Methods: Multipoint Calibration**

Multipoint Calibration of LI820



*Image: Multipoint Calibration of Sensor System showing observed values versus known concentrations.* 

#### **Methods: Sensor Drift**



*Image: Testing for sensor drift of the five mobile sensors over a seven-day measurement period. Each line corresponds to one of the five mobile CO*<sub>2</sub> *sensors.* 

#### Study Area: Local Climate Zones



Image: The images above show typical urban features characteristic for each neighborhood in the study area and were taken with a dashboard camera during the measurement campaign.