Department of Meteorology

Mixing height over London: spatio-temporal characteristics observed by Ceilometer networks

<u>Simone Kotthaus</u>¹, Charley Stockdale², Cristina Charlton-Perez³, Ewan O'Connor^{1,4}, Sue Grimmond¹

¹University of Reading, UK ²University of Exeter, UK ³Met Office, UK ⁴Finish Meteorological Institute, Finland s.kotthaus@reading.ac.uk

29 July 2015

© University of Reading 2014

www.reading.ac.uk

Urban Boundary Layer

- Mixing layer height ML: vertical boundary for pollutants
- Urban energy balance & surface roughness → turbulent mixing

Ceilometer laser (~ 910 nm) absorption & scatter

- Cloud ice/droplets, rain
- Aerosols
- Molecules/atmospheric gases, water vapour

Mixing & aerosol

Ceilometer networks

University of Reading

- CL31, CT25K (Vaisala)
- since 2008
- Central London (4 sites)
- Resolution: 15 s, 10 m

www.met.reading.ac.uk/micromet

Met Office

- CL31, CT25K (Vaisala) & CHM 15k (Jenoptik)
- UK, some close by
- Resolution: 30 s, 20 m

Backscatter processing

CL31 Vaisala Ceilometer

Op**Ciroisetalkcorrectidet**ection

- 2) Reverse background 'cosmetics'
- 3) Smoothing in space & time
- 4) Signal to noise ratio
- 5) Absolute calibration
- 6) Water vapour correction

Mixing layer height detection

Adapted gradient method (e.g. Emeis et al. 2008, MZ)

- $d\beta/dR < -10^{-6}$
- d²β/dR² crossing
 - 0
 - 10⁻⁸ for R < 300 m at night

• dR = 100 m \rightarrow first detectable layer at **150 m**

Track through time / height (e.g. THT, Martucci et al. 2010)

- Iterative layer connection:
 - Follow strongest gradient
 - Increasing window (time & range)

Layer attribution

- ML lowest layer at sunrise and before midnight
- CI highest layer around midnight
- **IBL** others (up to 5)

Layer attribution

Instrument inter-comparison

Sensor	Generation	
А	old	
В	old	
С	new	
D	new	

• Two 13 day periods

Evaluation – Doppler LiDAR

- Turbulence derived MH,
 - Barlow & Halios, Univeristy of Reading
- ClearfLo, Bohnenstengel et al. 2014, BAMS, <u>ww.clearflo.ac.uk</u>

Evaluation – Doppler LiDAR

- Turbulence derived MH, <u>Barlow & Halios</u>, Univeristy of Reading
- ClearfLo, <u>ww.clearflo.ac.uk</u> (Bohnenstengel et al. 2014, BAMS)
- Well mixed:
 - good agreement
- Need to check:
 - night-time
 - cloudy conditions

JK MH July 2012 2500 • Doppler @ NK 2000 Height [m a.g.l.] Height [m a.g.l.] 500 0 25/07 26/07 23/07 24/07 Day in 2012

Evaluation – Aircraft Data (AMDAR)

- source <u>http://amdar.noaa.gov/</u>
- Hourly average data around London, clear-sky days
- Takeoff and landing times (i.e. not throughout night)

Evaluation – Aircraft Data (AMDAR)

- source http://amdar.noaa.gov/
- Hourly average data around London, clear-sky days
- Takeoff and landing times (i.e. not throughout night)

Climatology

Climatology

winter ~ 800 – 1000 m

Night: ~ 500 m

15

Spatial variability

Benson & Odiham Met Office stations ∼ 60 km west of London

• \sim 60 km west of London

www.metoffice.gov.uk/public/lidarnet/lcbr-network.html

Spatial variability

NK MR

Benson & Odiham Met Office stations

• \sim 60 km west of London

www.metoffice.gov.uk/public/lidarnet/lcbr-network.html

Conclusions

- Long-term ML & CI climatology, 4 sites in central London
- Good sensor agreement (depending on generation)
- Evaluation against AMDAR and turbulence ML promising
- Clear seasonality & diurnal patterns
- Consistency with turbulent surface fluxes
- Urban > rural for convective boundary layer

Outlook

- Relation to atmospheric stability and other met observations
- Layer attribution at rural sites
- Case studies (Met Office; ClearfLo, e.g. seabreeze)

Acknowledgements

- Will Morrison, Duick Young, Paul Smith, Bruce Main, Trevor Blackall, Tom Smith, Lukas Pauscher, David Green, Max Priestmann for their help with the measurements
- KCL, ERG/LAQN, and RGS for providing access and facilities at various sites
- Christos Halios and Janet Barlow for providing turbulence derived mixing height estimates!
- TOPROF community and Vaisala for collaborations regarding CL31 processing

References

- Bohnenstengel, S, et al. 2014: Meteorology, air quality, and health in London: The ClearfLo project, *Bull Amer Meteor Soc*, **96**, 779–804.
- Emeis, S, K Schäfer, and C Münkel, 2008: Surface-based remote sensing of the mixing-layer height a review, *Meteorol Z*, **17**, 621-630.
- Martucci, G, C Milroy, and C, O'Dowd, 2010: Detection of Cloud-Base Height Using Jenoptik CHM15K and Vaisala CL31 Ceilometers, J Atmos Ocean Tech, **27**, 305-318.
- Münkel, C, J Räsänen, and A Karppinen, 2007: Retrieval of mixing height and dust concentration with lidar ceilometer, *Bound Lay Met*, **124**, 117–128.

Instrument details

Network	Site	Model	Firmware	Mode
LUMO	KSS45W	CL31	1.6, 1.715	H2_on
LUMO	RGS	CL31	1.6, 1.715	H2_on
LUMO	NK	CL31	2.012, 2.026	H2_on
LUMO	MR	CL31	2.012, 2.026	H2_on
MetOffice	BD	CL31	1.70	H2_off
MetOffice	MW	CL31	2.02	H2_off

Backscatter processing

CL31 Vaisala Ceilometer

1) Cross-talk correction

Vaisala co-axial optical concept:

- No overlap correction
- Backscatter useful up from 1st gate

Münkel et al. 2007, BLM

Backscatter processing

Cross-talk:

- systematic
- firmware dependant

Mixed layer height detection

Adapted gradient method (e.g. Emeis et al. 2008, MZ)

- Vertical gradient < -10⁻⁶
- Derivative crossing 0
 (or 10⁻⁸ for R < 300 m/night)

Mixed layer height detection

Track through time / height (e.g. THT, Martucci et al. 2010)

- Iterative layer connection
 - 1) $\pm 15 \text{ s} \rightarrow \pm 70 \text{ m}$
 - conflict: strongest gradient

Detection range

Current setup

- Smoothing:
 - **110 m** window
- Gradient & derivative:
 100 m interval

New strategy to target low levels