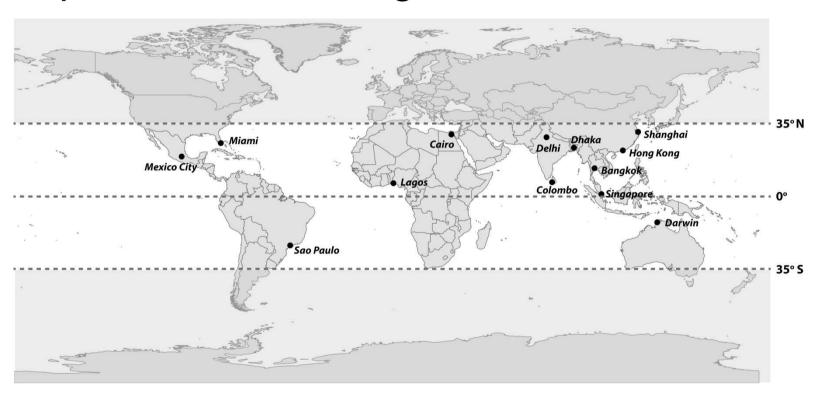


A REVIEW OF STUDIES ON THE RELATIONSHIP BETWEEN URBAN MORPHOLOGY AND URBAN CLIMATE TOWARDS BETTER URBAN PLANNING AND DESIGN IN (SUB)TROPICAL REGIONS

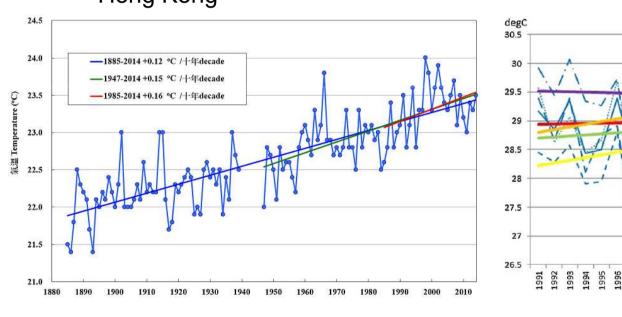

Justin Ho Chao Ren Edward Ng

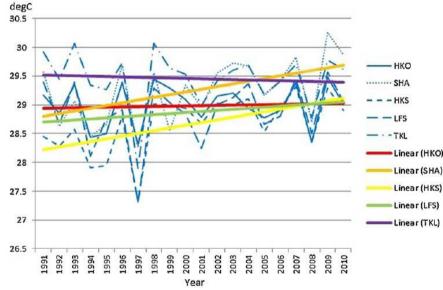
The Chinese University of Hong Kong

20 July 2015

INTRODUCTION & BACKGROUND

Population increasing

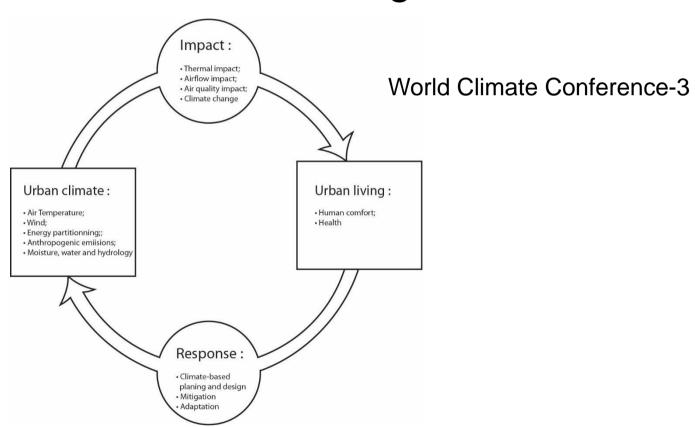



By 2050, mega-cities with more than 10 million people in the world, 22 of 37 in (sub)tropical regions (United Nations, 2012)

INTRODUCTION & BACKGROUND

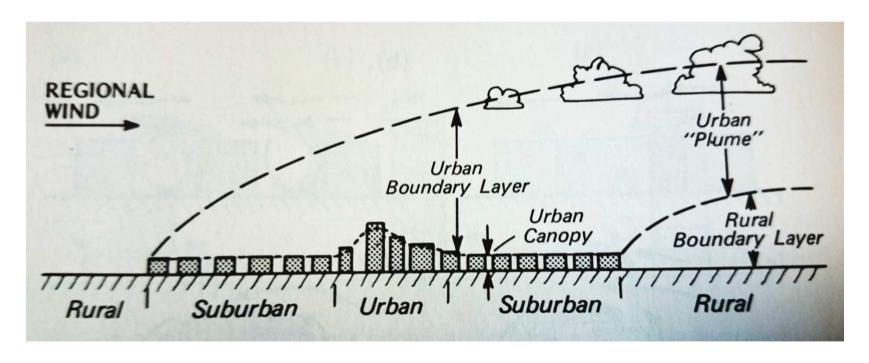
Temperature Rising, UHI

Hong Kong



(source: HKO) Source: Lau et al., 2013

INTRODUCTION & BACKGROUND


Urban climate and urban living

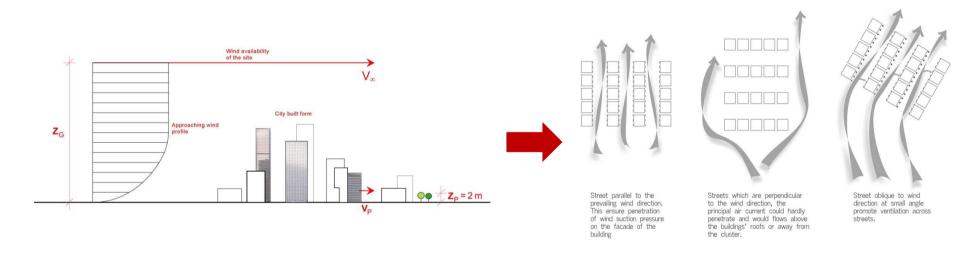
Framework of the understanding of the relationship between urban climate and urban living based on Grimmond et al.(2010) and Mills et al.(2010).

URBAN CLIMATE AND URBAN MORPHOLOGY

Scientific understanding of Urban Climate and Urban Morphology

Schematic representation of the urban atmosphere illustrating a two-layer classification of urban modification (Oke, 1987)

URBAN CLIMATE AND URBAN MORPHOLOGY

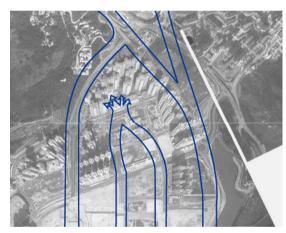

Studies on urban forms affecting urban climate

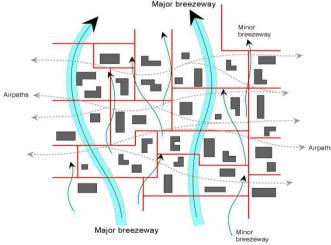
Researchers	City	Climate	Spatial scale	Urban morphological parameters	Approaches
Emmanuel & Fernando (2007)	Colombo, Sri Lanka; Phoenix, Arizona	equatorial wet; sub-tropical dry	Micro scale	Density	Numerical simulation
Johansson & Emmanuel (2006)	Colombo, Sri Lanka;	equatorial wet;	Micro scale	H/W, SVF, Orientation	Numerical simulation, Field measurements
Ali-Toudert et al. (2005); Ali-Toudert & Mayer (2006)	Beni-Isguen and Ghardaia ,Algeria	sub-tropical dry	Micro scale	H/W	Numerical simulation, Field measurements
Johansson (2006)	Fez, Morocco	sub-tropical dry	Local scale	H/W, Orientation	Field measurements
Fahmy & Sharples (2009)	Cairo, Egypt	sub-tropical dry	Local scale	compactness factor	Numerical simulation
Middel et al. (2014)	Phoenix, the United States	sub-tropical dry	Local scale	LCZ classification	Numerical simulation
Krüger et al (2011)	Curitiba, Brazil	sub-tropical highland		SVF	Numerical simulation, Field measurements
Chen et al.(2012)	Hong Kong	sub-tropical humid	Local scale	SVF	GIS-based simulation
Ng et al.(2011)	Hong Kong	sub-tropical humid	Local	Frontal area density, Ground coverage ratio	Numerical simulation
Yuan & Ng (2012a)	Hong Kong	sub-tropical humid	Local	Different building morphologies	Numerical simulation
Hwang et al (2011); Lin et al. (2012)	Huwei Township, central Taiwan	sub-tropical humid	Local	SVF	Numerical simulation, Field measurements

CLIMATIC CONSIDERATIONS IN URBAN PLANNING AND DESIGN

Scientific understanding

Planning and Design

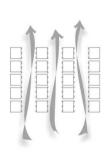

(source: HKPSG)



Ch11 Urban Design Guidelines

11. Qualitative Guidelines on Air Ventilation

Qualitative guidelines I

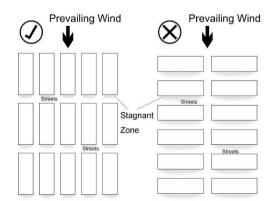


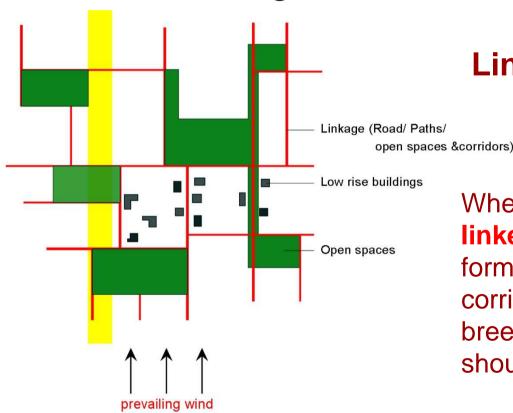
Breezeway / Air path

It is important for better urban air ventilation in a dense, hot-humid city to let more wind penetrate through the urban district. Breezeways can be in forms of roads, open spaces and low-rise building corridors through which air reaches inner parts of urbanized areas largely occupied by high-rise buildings. Projecting obstructions over breezeways /air paths should be avoided to minimize wind blockage

Qualitative guidelines II

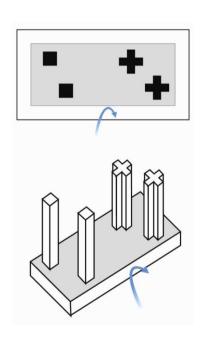
Street parallel to the prevailing wind direction. This ensure penetration of wind suction pressure on the facade of the building

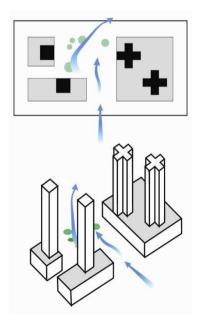

streets which are perpendicular to the wind direction, the principal air current could hardly penetrate and would flows above the buildings' roofs or away from the cluster.


Street oblique to wind direction at small angle promote ventilation across streets.

Orientation of Street Grids

An array of main streets, wide main avenues and/or breezeways should be **aligned in parallel**, or up to 30 degrees to the prevailing wind direction, in order to maximize the penetration of prevailing wind through the district.

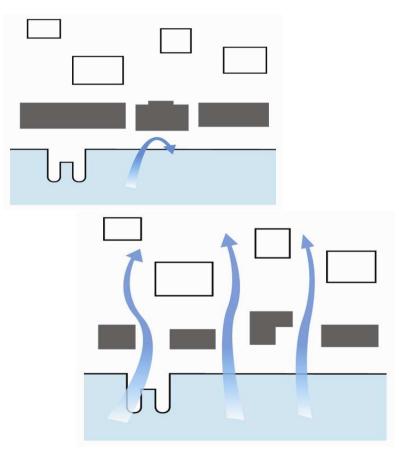

Qualitative guidelines III



Linkage of Open Spaces

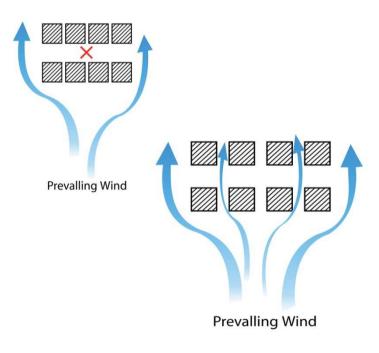
Where possible, open spaces may be **linked** and **aligned** in such a way to form breezeways or ventilation corridors. Structures along breezeways/ventilation corridors should be low-rise.

Qualitative guidelines IV



Non-building Area

Compact developments on large sites are particularly impeding air movement. Development plots should be laid out and orientated to maximize air penetration by aligning the longer frontage in parallel to the wind direction and by introducing non-building areas and setbacks where appropriate.


Qualitative guidelines V

Waterfront Sites

Waterfront sites are the gateways of sea breezes and land breezes due to the sea cooling and sun warming effects. Buildings along the waterfront should **avoid blockage** of sea/land breezes and prevailing winds.

Qualitative guidelines VIII

Building Disposition

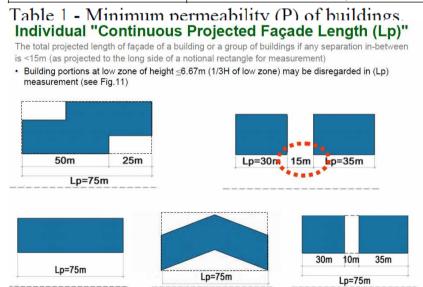
Where practicable, adequately wide gaps should be provided between building blocks to maximize the air permeability of the development and minimize its impact on wind capturing potential of adjacent developments. The gaps for enhancing air permeability are preferably at a face perpendicular to the prevailing wind.

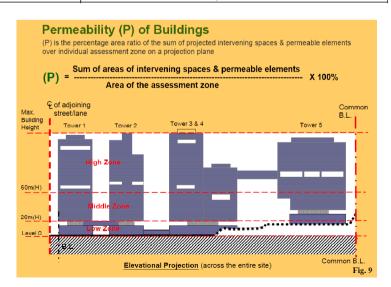
First issue January 2011

Buildings Department

Practice Note for Authorized Persons, Registered Structural Engineers and Registered Geotechnical Engineers

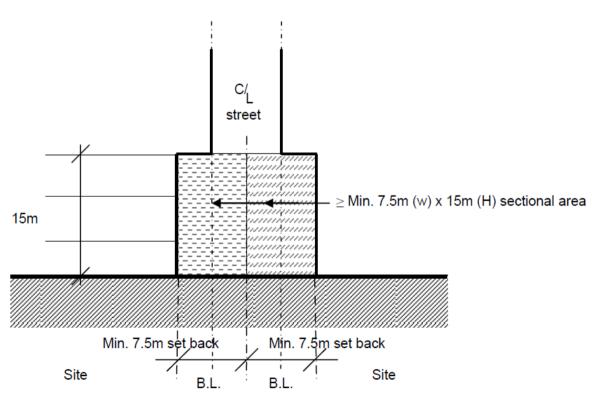
APP - 152


Sustainable Building Design Guidelines


Three key elements:

- Building separation,
- Building set back
- Site coverage of greenery

SBD Guidelines: Building Separation


	Permeability (P) of Buildings			
Height ⁵ (H) of	Site area $< 20,000 \text{ m}^2$ and with	Site area $\geq 20,000 \text{ m}^2$		
the tallest	building(s) of $Lp \ge 60m \log p$	(regardless of the length of		
building		buildings)		
H ≤ 60m	20%; 20%	20%; 25%		
H > 60 m	20%; 20%	20%; 33.3%		

SBD Guidelines: Building Set Back

Measures for Compliance with the Building Set Back Requirement

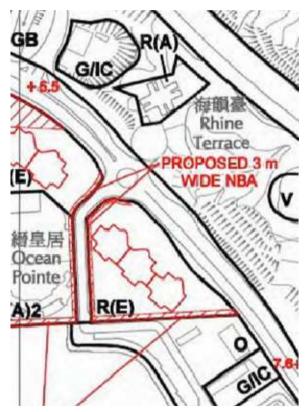
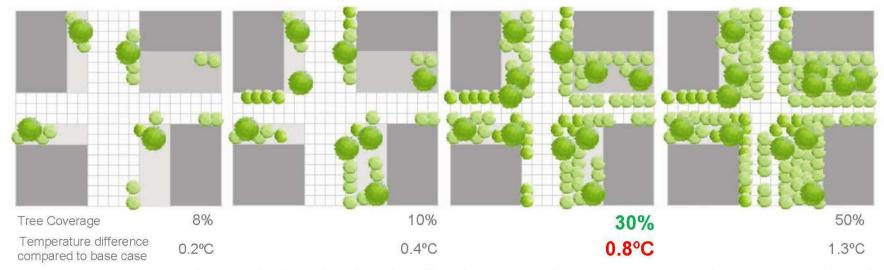
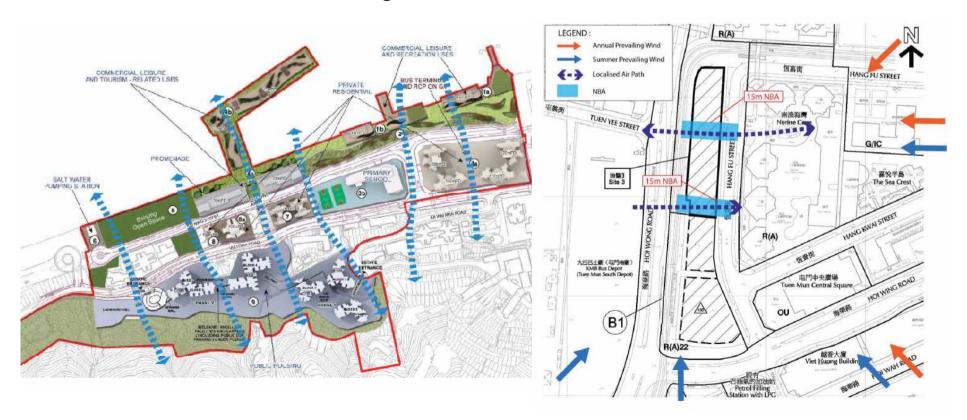



Fig. 1 Building set back as detailed in paragraph 13(a)

SBD Guidelines: Site Coverage of Greenery

Site Area (A)	Minimum Site Coverage of Greenery		
	(i.e. percentage of greenery area over site area)		
	Pedestrian zone	Other locations	Total greenery areas
$1,000 \text{ m}^2 \le A < 20,000 \text{ m}^2$	10%	no limit	20%
$A \ge 20,000 \text{ m}^2$	15%	no limit	30%


Table 2 Site coverage of greenery requirement

Ng, E., Liang, C., Wang, Y. N. and Yuan, C., (2011) A study on the Cooling Effects of Greening in High Density City: an experience from Hong Kong, Building and Environment, online 28 July 2011, ISSN 0360-1323, DOI: 10.1016/j.buildenv.2011.07.014.

Air Ventilation Assessment

Base on the HKPSG and SBD guidelines

CLIMATIC CONSIDERATIONS IN URBAN PLANNING AND DESIGN

Climate-related considerations in Environmental assessment methods

Developer	Assessment Tool	Climate-related considerations
Japan	CASBEE for Urban Development(CASBEE, 2007)	Q_{ud} 1- Natural Environment (microclimates and ecosystems) LR_{ud} 1- Environmental impact on microclimates, façade and landscape
Singapore	BCA Green Mark for Districts(BCA, 2013)	Part 4 – Environmental Planning : 4-3 Microclimate Optimisation 4-4 Outdoor Thermal Environment
HK	BEAM Plus (HKGBC and BEAM Society, 2012)	SA 7 Landscaping and Planters SA 8 Microclimate Around Buildings
India	IGBC Green New Buildings Rating System(IGBC, 2014)	SA Credit 3 Passive Architecture SSP Credit 6 Heat Island Reduction, Non-roof SSP Credit 7 Heat Island Reduction, Roof

DISCUSSION AND CONCLUSIONS

- Correct understanding of local climate and urban morphology is crucial for climate-based urban planning and design. (High H/W not applicable to everywhere)
- The translation of the scientific understanding of mitigation strategies to urban planning and design guidelines is little in tropical and sub-tropical regions.
- The climate change will intensify the impact of urban microclimate on tropical and sub-tropical environments and make city more vulnerable. One of future urban climate studies in these regions needs to incorporate the consideration of climate change and its impact at city level.

Thank you!

Dr. Justin Ho

Email: justinhe@cuhk.edu.hk justinckho@gmail.com