Climate information - application for improved planning and management of cities

WISE project of KMA, Chaeyeon Yi

NAVIGATING ADAPTIVE THERMAL COMFORT

Activity Levels, Clothing Insulation, Metabolic Rate (2) Passive Strategies (3) Solar Heat Gain (4) Automatic Conditioning, HVAC, Mixed Modes (5) Temporary Relief (b) Behavioral Adjustments, Cultural Norms
 Responding to Climate, Controlled Environment (8) Simple Solutions (9) Common Sense (20) Climate Variations
 Thermal Expectations, Layering (12) Personal Control, Occupant Participation (13) Mechanical Conditioning

02 WISE Urban Climate Information Service project

03 Conclusion

Expansion of Seoul city and Climate

High Population density

Major Urban Surface Properties (C.S.B. Grimmond *et al.,* 2010)

Surface properties	Purpose
Roughness length	Wind flow influence
Impervious surface fraction	Energy partition between Heat and moisture exchanges
Sky View Factor	Solar access and radiative cooling
Thermal admittance	Heating and cooling cycles of materials
Albedo	Heat absorption
Anthropogenic heat flux	Additional source of energy

Urban Climate Information - Applications

- Architectural design and urban planning
- Human comfort and health
- Forecasting urban weather, hazards and clima
- Practical applications of atmospheric information

Weather Monitoring Systems for Public and Commercial Services

Energy Balance Observing System of WISE

Study to Find Factors Affecting the Heat Island Intensity

Impact of the local surface characteristics and the distance from the center of heat Island to suburban areas on the night temperature distribution over the Seoul Metropolitan Area (Yi et al., 2014)

Season	Radius	Model		C(p)
Summer ·	1km	T = 17.61 + 1.41 US + 3.43 SVF	0.74	1.70
	200m	T = 18.77 + 47.62 BS + 40.98 BH + 4.11 SVF - 0.038 D	0.72	5.42
Winter	1km	T = -5.14 + 1.59 US	0.60	4.34
	200m	T = -8.73 + 78.22 BS + 61.48 BH + 6.63 SVF - 0.050 D	0.57	4.56

CAS (Climate Analysis Seoul) Workbench

by National Institute of Meteorological Research & Technical Univ. of Berlin

0

5

10

20

- (a) Meso-scale temperature deviation (*MD*)
- (b) Nocturnal sensible heat release by buildings (dT_{SHF})

$$dT_{SHF} = c_{SHF} \cdot (f_{CSAR} - 1)$$
$$f_{CSAR} = 1 + 4 \cdot \sqrt{f_{BS}} \cdot \frac{h_B}{ds}$$

(c) Decrease in air temperature by local cooling (dT_{ca})

$$dT_{ca} = c_{ca} \cdot Q_{ca}$$

= $c_{ca} \cdot \begin{pmatrix} f_{TV} \cdot Q_{ca,TV} \\ + f_{VS} \cdot Q_{ca,VS} \end{pmatrix}$

(d) Total air temperature deviation (*TD*)

 $TD = MD + dT_{SHF} + dT_{ca}$

Comparisons between Observed and Estimated Temperatures

Estimating spatial patterns of air temperature at building-resolving spatial resolution (Yi et al., 2015)

Maximum temperature distribution map of the Seoul based on the CAS workbench and an observed daily maximum temperature of 33 °C at the Seoul weather station (the threshold temperature for heat advisory in Korea)

Study on Urban Bio-meteorology (Heat Stress) Analysis, BioCAS

Bio-meteorological Climate impact Assessment System for building-scale impact assessment of heat-stress related mortality (Kim et al., 2013)

Old town

New town

Estimated excess mortality rate, expressed as increase in daily mortality rate relative to the expected base mortality rate of the same day, during the heat event on August 5, 2012

			•		
	min	max	mean	Std. dev.	Area: r _{EM} >0
Old Town (A)	0	0.51	0.02	0.069	14.3 %
New town (B)	0	0.09	~0	0.001	0.1 %
			•		

...........

Urban Climate Information System

Support to city actors

Urban Planning Processes in Korea

Needs of urban climate information on the Urban Plan

Applied Technology Development of Seoul Master Plan

Seoul Urban Plan Information System (http://www.urban.go.kr)

Green network plan of Seoul

Building height control and green network

Source : Urban Renaissance Master Plan for Downtown Seoul, Seoul Metropolitan Government, 2007

City

Applied Technology Development of Seoul Master Plan

Urban Climate Impact Assessment Reflecting Urban Planning Scenarios

(Kwon et al., 2015)

District Development Plan

UPIS

Input of CAS

plan

Urban Surface Properties Development

A Study on the Roughness Length Spatial Distribution in Relation to the Seoul Building Morphology (Yi et al., 2015)

From Aerial LiDAR and Satellite data

GIS DB

Relations between Roughness Length class rate and AWS wind speed

AWS wind speed decreased as the roughness length class rate(%) increased

	AWS Classification Table			
	Class	Range	Count	
	Z0_L1	~0.5	44	
-	Z0_L2	0.5~1.0	25	
-	Z0_L3	1.0~2.0	14	
-	Z0_L4	2.0~4.0	16	
-	Z0_L5	4.0~8.0	7	
	Z0_L6	8.0~16.0	2	
	Z0_L7	16.0~32.0	0	
-	Z0 L8	32.0~	0	

- Date : July ~ Sep.,
 2013 (92 days)
- AWS No: 161 AWSs

15/21

GIS DB

- Condition :
- wind speed < 2m/s cloud cover < 30%

Seoul Mean Radiant Temperature using SOLWEIG

MR

Evaluation of Sky View Factor - calculations methods for enhancement

- 1. Fish-eye photography based calculation (1D, observation sites)
- 2. SOLWEIG model using DBM, DVM Grid (2D, Lindberg et al., 2008)
- 3. Three-dimensional point cloud based calculation (2D, An et al., 2014)

Fish-eye

SOLWEIG model

LiDAR data

Flux Observation and Validation of the radiation flux

Net radiometer, Infrared thermometers, Sonic wind and temp., H_2O/CO_2 gas analyzers, Humidity, Anemometer and wind direction

Validation of Radiation Flux from SOLWEIG

Model vs. measured hourly data of all the shortwave (n=96) and longwave (n=96) fluxes

Кир	Kdown	Lup	Ldown
y = 0.88x + 0.63	y = 1.02x + 7.56	y = 1.03x + 13.64	y =0.92x + 36.11
$R^2 = 0.97$	$R^2 = 0.94$	$R^2 = 0.98$	$R^2 = 0.93$

Spatial and Temporal Variation of Thermal Comfort in Seoul (August 10, 2013)

Monteiro and Alucci (2009) Temperature Equivalent Perception(TEP) TEP= -3.777 + 0.4828*AT + 0.5172*Tmrt+0.0802*RH-2.2322*WS

21/21

03 Conclusion

- Comprehensive support system for long-term city planner was developed using UPIS, CAS, CFD
- Provides climate information for future urban planning
- 2. A prototype thermal comfort information system for short-term support of the citizens was developed using AWS, SOLWEIG
 - Provides information for supporting the current citizen act

Illustrations by Headcase continuingeducation.construction.com

NAVIGATING ADAPTIVE THERMAL COMFORT

 Activity Levels, Clothing Insulation, Metabolic Rate 2 Passive Strategies 3 Solar Heat Gain 4 Automatic Conditioning, HVAC, Mixed Modes 5 Temporary Relief b Behavioral Adjustments, Cultural Norms
 Responding to Climate, Controlled Environment 6 Simple Solutions 9 Common Sense 10 Climate Variations
 Thermal Expectations, Layering 12 Personal Control, Occupant Participation 13 Mechanical Conditioning