Urban Climate Zoning for Making “Hint Map for Urban Planning”

Analysis on the effect of sea breeze on summer diurnal temperature distribution pattern in Hiroshima plain
Urban Environmental Climate Maps (UECMs) are proposed as one of the decision support tools for the mitigating urban warming.
Background

UECMs can be used when stakeholders (citizen, planner, architect, specialist, and so on.) make decision on urban planning, architecture design, and environmental policy making.
Background

It is effective to indicate the recommendations and climatic resources for each zone which is classified from a climatic perspective.
In Japan, there are many coastal cities. Hiroshima is one of such cities.
In Hiroshima, the sea breeze seems to have great influence on summer diurnal temperature distribution patterns.
Objective

Understanding the spatial distribution of sea breeze effects will be helpful for making UECMs.

This study aims at making the maps of sea breeze effect distribution in Hiroshima plain.

- Observed data
- Numerical simulation results
Urban planning for mitigating the urban warming is needed in Hiroshima.
Method

1. Understanding the sea breeze effect distribution using the observed temperature of 39 points.

2. Making the map of the sea breeze effect distribution using the meso-scale meteorological model.

3. Analyzing the relationship between the observed temperature and the local ventilation conditions.
Outline of observations
Outline of observations

Period: July 20, 2013 - September 23, 2013
Interval: 20 minutes

This is in elementary school in Hiroshima.
Extracting fine weather days

Period (July 20, 2013 – September 23, 2013)

The typical summer fine weather days (35 days) were extracted from the all data (66 days) in the observation period by using the local meteorological station data.
Extracting fine weather days

Typical summer fine weather days (35 days)

<table>
<thead>
<tr>
<th>July</th>
<th>August</th>
<th>September</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>M</td>
<td>T</td>
</tr>
<tr>
<td>S</td>
<td>M</td>
<td>T</td>
</tr>
<tr>
<td>S</td>
<td>M</td>
<td>T</td>
</tr>
</tbody>
</table>

- **Criteria**
 - Daily precipitation is within 1 mm.
 - Daylight hours are 40% or more of the possible duration of sunshine.
 - Daily maximum temperature is 30 degree C. or more.
 - The weather is not rainy.
Daily wind patterns classification

Wind blowing patterns classification was performed by using the proposed method in the previous research.

Pattern A
Sea breeze doesn’t blow (2 days)

Pattern B
Sea breeze blows, but land breeze doesn’t blow (4 days)

Pattern C
Land and sea breeze blow (29 days)
Results of observations (Pattern C)

The temperature in coastal area is relatively lower and the temperature in inland area is relatively higher.

Sea breeze effect?
The sea breeze effect distribution

The observed temperature difference between pattern C (the days that land and sea breeze blow) and pattern A (the days that sea breeze doesn’t blow) is calculated by using the method proposed in previous research.
The sea breeze effect distribution

From these figures, it can be seen that the effect of sea breeze for mitigating urban warming is relatively larger in coastal area and the effect is smaller in inland area.
Method

1. Understanding the sea breeze effect distribution using the observed temperature of 39 points.

2. Making the map of the sea breeze effect distribution using the meso-scale meteorological model.

3. Analyzing the relationship between the observed temperature and the local ventilation conditions.
Used model and calculation condition

<table>
<thead>
<tr>
<th>Period</th>
<th>August 4-17, 2013 and August 30- September 12, 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertical grid</td>
<td>28 layers (Surface ~ 100hPa)</td>
</tr>
<tr>
<td>Horizontal grid</td>
<td>Domain1: 3km dimension 120×120, Domain2: 1km dimension 103×103</td>
</tr>
<tr>
<td>Meteorological data</td>
<td>Meteorological Agency Meso Objective Analysis Data (every 3 hour, 10km grid, 20 layers) NCEP Re-analysis global objective analysis data (every 6 hour, 1°Grid, 17layers)</td>
</tr>
<tr>
<td>Land data</td>
<td>Elevation: Numerical Map (Resolution about 250) Land cover: Digital National Land Information (Resolution about 100) Land cover mesh data in urban area of Digital National Land Information (Resolution about 100) Building use data of Basic Surveys Concerning City Planning in Hiroshima city Data collection of Arc GIS (Esri Japan Corporation) Actual vegetation map of Ministry of the Environment</td>
</tr>
<tr>
<td>Microphysics</td>
<td>Purdue Lin scheme</td>
</tr>
<tr>
<td>Radiation</td>
<td>Long wave: Rapid Radiative Transfer Model (RRTM) - Longwave Short wave: MM5 (Dudhia) - Shortwave</td>
</tr>
<tr>
<td>PBL scheme</td>
<td>Mellor-Yamada-Janjic PBL</td>
</tr>
<tr>
<td>Surface scheme</td>
<td>Urban area: Urban Canopy Model (UCM) Nonurban area: Noah LSM</td>
</tr>
<tr>
<td>Cumulus parameterization</td>
<td>None</td>
</tr>
<tr>
<td>FDDA</td>
<td>None</td>
</tr>
</tbody>
</table>
Results

The temperature in coastal area is relatively lower and the temperature in inland area is relatively higher.
Results

The wind velocity in coastal area is relatively higher. The prevailing wind is from the SSW.
The temperature difference between “the days that sea breeze blows (Average in Aug. 10-16)” and “the days that sea breeze doesn’t blow (Sep. 5)” is calculated.
The spatial distribution pattern of sea breeze effect made from the numerical calculation is similar to the one which is made from the observed temperature.
The difference of sensible heat advection by area

The hourly sensible heat advection is calculated on representative three meshes in Aug. 13.
Discussion

The absolute value of sensible heat advection
Mesh A: relatively larger in all time
Mesh B: large at 12:00, Mesh C: large at 16:00
According to these results, the temperature difference pattern between “the days that sea breeze blows” and “the days that sea breeze doesn’t blow” is influenced by sea breeze.
Method

1. Understanding the sea breeze effect distribution using the observed temperature of 39 points.

2. Making the map of the sea breeze effect distribution using the meso-scale meteorological model.

3. Analyzing the relationship between the observed temperature and the local ventilation conditions.
Introduction

It is considered that the temperature in each place is influenced by not only sea breeze effect that is regional factor but also surrounding ventilation condition that is local factor.

Analysis of the relationship between the observed temperature and the surrounding ventilation condition by using the rate of building blocking (RRB).
First, the RRB is calculated on all temperature observation points (39 points).

The way of RRB calculating in ArcGIS 3D-Analyst

- Observation point
- Skyline
- RRB
- Skyline Barrier
- Projected Area
- Parting Line of Central Angle 90 degrees

\[
RRB_{ssw} = \frac{(X-A)}{X} \times 100
\]

- X: Area of sectorial polygon
Next, the correlation coefficient between these RRB and average temperature at 14:00 for each zone are calculated.

Each zone is integrated to following two zones because observation points are limited in number;
1) The area which is affected by sea breeze
2) The area which is not affected by sea breeze
It is considered that the effect of surrounding ventilation condition is larger in the south area of plain.
From method 1,

The daytime temperature distribution is related with sea breeze.

From method 2,

The map of the sea breeze effect distribution is made using the meso-scale meteorological model.

From method 3,

The effect of surrounding ventilation condition is larger in the south area of plain.