

#### A Modelling-Mapping Approach for Fine-Scale Wind Assessment in High Density Cities

Presenter: Chao Yuan 袁超 Leslie Norford, Rex Britter, Steve Yim, Edward Ng Department of Architecture, Massachusetts Institute of Technology (MIT) Architecture and Sustainable Design, Singapore University of Technology and Design (SUTD)





## INTRODUCTION

#### Background







# INTRODUCTION

icuco

oulouse Fran

### **Current Methods**



- Advantages: Accurate modelling results, high resolution information
- **Disadvantages**: Time-consuming, Need for intensive technical support





# INTRODUCTION

### **Current Methods**

Morphological model



(Grimmond and Oke, 1999)

Raupach (1991):

 $\operatorname{Rt}_d$  is  $z_d = f_d \overline{z_H}$ 

 $\operatorname{Rt}_0$  is  $z_0 = f_0 \overline{z_H}$ ,

Macdonald (1998):

Ma<sub>d</sub> is 
$$\frac{z_d}{z_H} = 1 + \alpha^{-\lambda_P}(\lambda_P - 1)$$
  
and Ma<sub>o</sub> is

$$\frac{z_0}{z_H} = \left(1 - \frac{z_d}{z_H}\right) \exp\left\{-\left[0.5\beta \frac{C_D}{k^2} \left(1 - \frac{z_d}{z_H}\right)\lambda_F\right]^{-0.5}\right\}$$

icuco

20<sup>6</sup>-24<sup>6</sup> July 201 **Joulouse Franc** 

#### Map of pedestrian-level wind permeability



<sup>(</sup>Ng, E., et al., 2011)

#### Advantage:

Low computational cost Quick decision-making

#### • Disadvantage:

Low resolution



#### To develop the fine-scale morphological modelling-mapping approach

- Lower computational costs than that of Computational Fluid Dynamics (CFD) simulation and the wind tunnel experiment.
- <u>Higher resolution of modelling results</u>, providing the information about the air flow between buildings, compared with spatially-averaged results in the conventional morphological models.

To bridge the gap between the current modelling methods and requirements of practical planning and design.





# **MODEL DEVELOPMENT**

### **Frontal area density**

#### **Definition:**

![](_page_5_Figure_3.jpeg)

Frontal area density at the wind direction of  $\theta$ :

$$\lambda_{f(\theta)} = \frac{A_F}{A_T}$$

Drag force acting on the control volume (Bentham and Britter, 2003):

$$\tau_w A_T = 0.5 \rho U_c^2 \sum_N C_d A_F$$

#### **Problems:**

• To apply  $\lambda_f$  at high density areas: Most of morphological models are not valid when  $\lambda_f > 0.3 - 0.4$ .

oulouse Fran

• To increase the resolution of modeling results: The spatial resolution is too low to the neighborhood-scale analysis.

![](_page_5_Figure_11.jpeg)

![](_page_5_Figure_12.jpeg)

![](_page_5_Picture_13.jpeg)

![](_page_5_Picture_14.jpeg)

# **MODEL DEVELOPMENT**

Sectional frontal area density ( $\lambda_f$ ) (Ng, et al., 2011)

![](_page_6_Figure_2.jpeg)

Podium layer and urban canopy layer (Ng, et al., 2011)

Sectional  $\lambda_f$ 

![](_page_6_Figure_4.jpeg)

Relationship between velocity ratio and  $\lambda_f$ 

Sectional frontal area density at the wind direction of  $\theta$ :

ICUCo

Toulouse France

$$\lambda_{f(Z,\theta)} = \frac{A(\theta)_{proj(\Delta z)}}{A_T}$$

Sectional frontal area density with the annual wind frequency  $(P_{\theta})$ :

$$\lambda_{f(z)} = \sum_{\theta=1}^{16} \lambda_{f(z,\theta)} \cdot P_{\theta}$$

![](_page_6_Picture_11.jpeg)

## **MODEL DEVELOPMENT**

icuco

20<sup>o</sup>-24<sup>o</sup> July 2011 Joulouse France

### Point-specific $\lambda_f$

![](_page_7_Figure_2.jpeg)

![](_page_7_Picture_4.jpeg)

![](_page_8_Picture_2.jpeg)

VR: Ratio between wind speeds at the pedestrian level and 500 m above ground

 $VR = \sum_{i=1}^{16} P_i \cdot VR_{500,i}$   $VR_{500,i}: \text{ directional wind velocity ratio}$   $P_i: \text{ annual wind frequency in the } i^{\text{th}} \text{ wind direction}$ 

![](_page_8_Picture_5.jpeg)

![](_page_8_Picture_7.jpeg)

# **MODEL TEST**

#### **Linear Regression**

![](_page_9_Figure_2.jpeg)

• The wind VR is negatively associated with the distance-weighted  $\lambda_{f point}$ .

oulouse France

• The more and closer surrounding roughness elements to the particular point, the more air flow would be impeded, and the slower the pedestrian-level wind speed at the particular point.

![](_page_9_Picture_6.jpeg)

# **MODEL TEST**

#### **Linear Regression**

| Districts                               | Zones  | R <sup>2</sup><br>(exponent c=2.0) | SE of predicted VR | SE of predicted<br>U <sub>p</sub> (m/s) | Slope<br>Coefficient | Intercept |
|-----------------------------------------|--------|------------------------------------|--------------------|-----------------------------------------|----------------------|-----------|
| Mong Kok<br>(Regular street grid)       | Zone a | 0.56                               | 0.03               | 0.20                                    | -3.9                 | 0.4       |
|                                         | Zone b | 0.42                               | 0.04               | 0.27                                    | -3.8                 | 0.4       |
| Sheung Wan<br>(Irregular street grid)   | Zone a | 0.49                               | 0.05               | 0.33                                    | -1.7                 | 0.3       |
|                                         | Zone b | 0.62                               | 0.04               | 0.27                                    | -1.7                 | 0.3       |
| Causeway Bay<br>(Irregular street grid) | Zone a | 0.49                               | 0.03               | 0.20                                    | -1.9                 | 0.3       |
|                                         | Zone b | 0.40                               | 0.04               | 0.27                                    | -1.6                 | 0.3       |

Note: In the calculation of SE of predicted pedestrian level wind speed ( $U_p$ ), the annually averaged wind speed at the reference height (500 m above the ground) at study areas is 6.67 m/s, which was obtained from wind tunnel experiment.

For districts with regular street grids (main streets perpendicular with each other)  $VR = -3.9\lambda_{f\_point} + 0.4$ 

For districts with irregular street grids

**ICUC** 

 $VR = -1.7\lambda_{f\_point} + 0.3$ 

![](_page_10_Picture_8.jpeg)

## MAPPING

![](_page_11_Figure_1.jpeg)

![](_page_11_Figure_2.jpeg)

Pixel by pixel (1 m × 1 m) by a Visual Basic for Applications (VBA) script in the ArcGIS System

icuco

20<sup>th</sup>-24<sup>th</sup> July 2015 Toulouse France

![](_page_11_Picture_4.jpeg)

![](_page_11_Picture_5.jpeg)

icucy

20<sup>th</sup>-24<sup>th</sup> July 2015 Toulouse France

![](_page_12_Figure_2.jpeg)

![](_page_12_Picture_4.jpeg)

#### **Pedestrian-level wind speed**

![](_page_13_Figure_2.jpeg)

From the perspective of the outdoor thermal comfort:

icuco

20<sup>th</sup>-24<sup>th</sup> July 2015 Toulouse France

- Class 1 (Poor, <0.6 m/s)
- Class 2 (Low, 0.6 m/s -1.0 m/s)

- Class 3 (Satisfactory, 1.0–1.3 m/s)
- Class 4 (Good, > 1.3 m/s)

![](_page_13_Picture_9.jpeg)

# IMPLEMENTATION

## **District Planning**

![](_page_14_Figure_2.jpeg)

ulouse Fra

### **Planning Guidelines**

- No new development project is allowed at the purple zone.
- New development projects should be strictly controlled at the yellow zone with the detailed study by CFD simulation or Wind tunnel experiments.
- No additional bus stops, terminus, heavy traffic roads, or other land use with pollutant sources at purple and yellow zones to avoid trapping the emitted air pollutant.

![](_page_14_Picture_7.jpeg)

![](_page_14_Picture_9.jpeg)

# IMPLEMENTATION

### **Building Design**

Evaluation of the effect of new buildings on the neighborhood wind environment

![](_page_15_Figure_3.jpeg)

![](_page_15_Figure_4.jpeg)

![](_page_15_Picture_5.jpeg)

![](_page_15_Picture_7.jpeg)

## CONCLUSIONS

#### New modelling and mapping approach

To bridge the gap between the current modelling methods and requirements of practical planning and design.

#### A: Practical:

Geometry calculation ---based on approximation

$$\begin{split} \lambda_{f\_point} &= \frac{\iint_D \ l_{x,y}^c (A_{\Delta z,x,y}/A_t) dx dy}{A_t} \ D &= \{x^2 + y^2 \leq r^2\} \\ VR &= -3.9 \lambda_{f\_point} + 0.4 \quad (\text{regular street}) \end{split}$$

 $VR = -1.7\lambda_{f_point} + 0.3$  (irregular street)

#### **B: Accurate:**

Standard error is one order of magnitude smaller than the predicted values

![](_page_16_Figure_9.jpeg)

![](_page_16_Figure_10.jpeg)

#### C: High resolution:

ÍCUCo

oulouse Fran

Spatially-averaged  $\lambda_f$  (Ng, et, al., 2011)

Point-specific  $\lambda_f$ 

![](_page_16_Figure_14.jpeg)

![](_page_16_Figure_15.jpeg)

![](_page_16_Picture_17.jpeg)

## **Thank You**!

yuanc@mit.edu yuan\_chao@sutd.edu.sg

![](_page_17_Picture_2.jpeg)

![](_page_17_Picture_4.jpeg)