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Beijing area: on North China Plain
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topographic-heights (m, colors)
city-district boundaries (grey lines), study area (black square)
214 & 4t Ring Roads (RRs, inner & outer red circles, respectively)
Beijing Observatory (BJO), & rural temp-stations (black dots)



Data & Analysis (1)

Data:June-August 2008-12
 Rawinsonde wind from Beljing Observatory

 Hourly (2-m) T & RH and (10-m) V at 64 AWS sites in &
around Beljing

AWS-site averagday(assume@s 0-19LT) & night (assume
as 20-07 LT) T, g, & Walueswere determined

Near-surface flowsclassified as nighttime (02-08 LT)/Mt.- &
daytime (12-22 LT)/valley-breezes, respectiviéhai et al. 2002)

09-11& 23-01 LT:transitional periods



Data & Analysis (2)

Prevailingflow-direction:determined at each AWS site for Mt.-
& valley-breeze periods

Rawinsondestwice daily (08 & 20 LT) duringlune & thrice
daily (08, 14, 20 LTpuring July & August

June to August he80% of Beljing annugprecif

850 hPa wind-velocityprior to each rainfall-event (defined
below): itsstorm “steering” velocity



Data & Analysis (3)

Rainfall-eventconcurrent-rairat least two AWS sits, each with
hourly accumulation > 0.1 mm

Minimum of 3-h between eventgas required333 events
Each eveniclassifiedoy storm“steering” velocity

Southwesterly flowsl34 cases (40% of all eventsyutherly:
second (51 cases)thers:only 14-33 events

Thusonly southwesterly flows studietb avoid confusion
betweerup- & down-wind(the key point irmnyurban
climatology study)



Data & Analysis (4)

Hourly-averagd3eijing UHI-intensity:average temp-values at all
26 urban stationgvithin Fourth RR)minuscorresponding rural
value(average of seven stations)

Thunderstornrcasesclassified by itsevent” UHI-value,i.e., the
max of thethree pre-event hourly UHI-values

Average calculated008-12 Beijing summer-UHIL.25C

Event-UHIsabove or below 1.2&: strong- & weak-UHlsre-
spectively

35 of 61strong-UHI were nighttim€20-07 LT)& 53 of 73weak-
UHIs were daytimg08-19 LT)



Data & Analysis (5)

Regional-normalized rainfall-amount NR (%)iminates large-
scale effects, highlighting local impacts

Site-NR:calculated as its total study-period rainfalhusthe all-
site averagéoroducing a positive or negative deviatiainided

by (i.e., normalizing) thall-site average

ResultsDOU*, WANG, BORNSTEIN, & MIAO (2015) in JAMC
* Her M. S.thesis

Bob Bornsteirwill give Wed plenaryon urban impacts on precip,
which will put this study into &rger context



Results-1: 2-m temps
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Fig.2. Average Beijing-area 2-m temps (°C)
showing high (H, shaded in red ) & low (L) temp areas
Note: smaller (0.25 vs 0.5°C ) day isotherm-increment
Results: (a) cooler nights & (b) warmer days (of course), but with
(c) stronger night than day average-UHI (1.7 vs. 0.8°C)



Results 2:10-m wind speeds
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Fig.3. Average Beijing-area 10-m wind speeds (m/s)
showing high (H) & low (L, shaded in blue) speed areas
Note: smaller (0.3 vs 0.5 m/s ) night isotach-increment

Results: low-speed belt between 2" & 4t RR, the
max build-up urban area



Results-3: 10-m wind direction
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Fig.4. Same as Fig. 2, but for 10-m prevailing -winds for
(a) Mt. (02-08 LT) & (b) valley (12-22 LT) breeze periods
Blue arrows: subjective representative flow-directions
Note: vector-scale is double for (faster) day winds
Results: (a) urban convergence during night strong-UHIs
& (b) (Some) urban bifurcation during day weak-UHIs



Results-4: Rainfall amount (all cases)
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Fig.5. Same as Fig. 2, but for normalized rainfall-amounts N (%)
for all cases, where high urban-precip areas are shaded red
& thin blue-lines show a bifurcating streamline
Results: weak N-extremes (1) decreases over & downwind (>25%) of city
& (2) increases in lateral-areas (>15%) around city



Results-5: Rainfall (strong- vs. weak-UHIs)
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Fig 6. Same as Fig. 5, but for weak (L) vs. strong (R) UHIs
Note: strong-UHIs have larger (20 vs. 10%) isoterm-increment
Results: (1) weak-UHlIs (on L): downwind N-decrease is larger (>35
vs. >25 %) than in Fig. 5 (i.e., for all cases together)

(2) strong-UHIs (on R): urban-center N-increase is now >70%
(3) Fig. 5 shows weak-UHI bifurcation domination of “all-cases”



Normalized precip-change N (%) vs. UHI-threshold (°C)

for over-urban max-increases (as in Fig. 5) where

(a) over-urban max increased-precip is sensitive to UHI-magnitude
(its driving mechanism), rising (non-linearly) from 60 to 81% as
UHI-threshold increased from 1.00 to 1.50°C (see below)

(b) downwind max-decreased precip: not sensitive to UHI-magni-
tude (not shown), as it’s not its driving mechanism; values chan-
ged only from -32 to -36% over this UHI-range
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Summary of summer urban-precip impacts

All SW-flow cases together: urban-precip impacts were
relatively small

When cases are divided into weak- & strong-UHI cases: two
strong conflicting-patterns emerged

— Weak-UHiIs: building-barrier induced storm-bifurcation, with
(1) downwind lateral high-precip areas & (2) over-city &
downwind rain-shadow min-precip areas

— Strong-UHIs: UHI-induced convergence & a precip-max, both
over the urban-center

These conflicting effects:

— first hypothesed by Bornstein & LeRoy (2000) and Bornstein
(2011), but neither used UHI-magnitude to divide cases (they
assumed results showed this)

— This is first study to demonstrate this UHI-magnitude impact
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