

Transpiration of urban trees and its impact on nocturnal cooling in Gothenburg, Sweden

Janina Konarska¹, Johan Uddling², Björn Holmer¹, Martina Lutz², Fredrik Lindberg¹, Håkan Pleijel², Sofia Thorsson¹

ICUC9, Toulouse, France, 20-24 July 2015

¹ Urban Climate Group, Department of Earth Sciences, University of Gothenburg, Sweden ² Department of Biological and Environmental Sciences, University of Gothenburg, Sweden

RESEARCH CONTEXT. Urban trees

- Urban trees a common mitigation strategy in climate-sensitive planning
- Urban environment tree growing conditions and stress factors different from those in forests
- To provide a cooling effect, trees need to remain healthy in the stressful urban environment

RESEARCH CONTEXT. Night-time tree transpiration?

Phase 1 (around sunset)

- Site specific, intensive cooling
- Holmer et al. 2013: more intensive cooling in vegetated than nonvegetated sites in Ouagadougou, Burkina Faso

Phase 2 (starting 2-3 h after sunset)

- Spatially homogeneous, less intensive cooling
- Holmer et al. 2013: similar cooling rates at vegetated and nonvegetated sites in Ouagadougou

Holmer B, Thorsson S, Linden J (2013) Evening evapotranspirative cooling in relation to vegetataion and urban geometry in the city of Ouagadougou, Burkina Faso. Int J Climatol 33: 3089-3105

OBJECTIVES

 Quantify the magnitude and diurnal variations of transpiration of the most common urban tree species in a high latitude city of Gothenburg, Sweden

OBJECTIVES

- Quantify the magnitude and diurnal variations of transpiration of the most common urban tree species in a high latitude city of Gothenburg, Sweden
- Analyse the influence of meteorological conditions and surface permeability on the transpiration of urban trees

OBJECTIVES

- Quantify the magnitude and diurnal variations of transpiration of the most common urban tree species in a high latitude city of Gothenburg, Sweden
- Analyse the influence of meteorological conditions and surface permeability on the transpiration of urban trees
- Find out whether the transpiration of urban trees contributes to daytime or nocturnal cooling

MEASUREMENTS. Instruments

- LiCor XT-6400 Portable Photosynthesis System an open system measuring gas exchange between leaf and air using an infrared gas analyser
 - leaf transpiration rate (E_L , mmol m⁻² s⁻¹)
 - stomatal conductance (g_s , mmol m⁻² s⁻¹)
- *T*_a and RH (→ cooling rates) measured simultaneously with two TinyTag Plus 2 instruments:
 - at the measurement site, under one of the trees
 - at a reference site in a non-vegetated street canyon
- Energy loss per unit ground area (Q_E, W m⁻²) due to tree transpiration was calculated by scaling up E_L using measured leaf area index (LAI)
- Note: for more information on LAI measurements in urban areas, see Jenny Klingberg's presentation this afternoon, session UCP11

MEASUREMENTS. Study sites

- Seven most common tree species in Gothenburg: common lime (linden), English oak, Norway maple, Silver birch, Horse chestnut, European beech, Japanese cherry
- Street and park trees, different growing conditions (but no irrigation)
- 4-6 tree individuals per site, 8 leaves per tree (4 sunlit and 4 shaded)
- Daytime and night-time measurements on warm, sunny summer days (2012-13)
- Linden trees: three sites, continuous hourly measurements from noon until a few hours after sunset

RESULTS. Diurnal course of transpiration (linden, *T. europaea*)

- *E*_L of sunlit leaves was on average 3x higher than of shaded leaves
- Park trees transpired more intensively than street trees
- Transpiration dropped significantly before sunset due to decreasing VPD and incoming solar radiation, but remained active during the night (7% of midday *E*_L of sunlit leaves and 20% of those in shadow)

A simple estimation of available rainwater [mm]:

Accummulated rainfall **x** Fraction of permeable surfaces

- soil characteristics, interception, the extent of roots etc. are not accounted for
- + widely available data
- + no measurements needed

Accummulated rainfall **X** Fraction of permeable surfaces

- soil characteristics, interception, the extent of roots etc. are not accounted for
- + widely available data
- + no measurements needed

RESULTS. Estimated energy loss per unit ground area

		Incoming solar	Energy loss due to tree	
Species, location	Date	radiation	transpiration, Q _E [W m ⁻²]	
		(midday, W m ⁻²)	Midday	Night-time
Linden, park trees	11.07.2013	859	92	16
Linden, street trees, narrow	20.07.2013	788	72	13
grass lawn	22.08.2013	594	132	20
Linden, street trees, wide	03.09.2013	572	206	30
grass lawn	06.09.2013	609	174	18
English oak	12.07.2013	795	343	38
	28.08.2013	433	390	32
Silver birch	09.07.2013	812	230	1.5
	20.08.2013	528	190	26
Norway maple	20.08.2013	613	196	12
Horse chestnut	23.07.2013	799	171	32
	29.07.2013	635	260	31
European birch	26.07.2012	809	127	30
Japanese cherry	13.07.2013	780	244	25
	02.09.2013	610	260	35
Average		682	206	24

RESULTS. Transpiration vs daytime and nocturnal cooling

- **Phase 1** More intensive cooling with increasing E_{L}
 - Less intensive cooling at a non-vegetated reference site
- **Phase 2** No correlation between cooling rate and $E_{\rm L}$

RESULTS. Transpiration vs daytime and nocturnal cooling

Phase 1 - More intensive cooling with increasing
$$E_{L}$$

- Less intensive cooling at a non-vegetated reference site

- Midday No correlation between midday warming rate and *E*_I dispite strong transpiration
- **Phase 2** No correlation between cooling rate and $E_{\rm L}$

CONCLUSIONS

- Poor growing conditions of trees (impermeable surfaces surrounding the trees) decrease their transpiration and therefore cooling effect. A simple estimation of available rainwater, based on widely available data, explained 68% of variance in stomatal conductance
- Night-time transpiration was active in all studied trees and reached on average 7% and 20% of daytime E_L of sunlit and shaded leaves, respectively, with an estimated latent heat flux of 24 W per unit ground of vertically projected tree area
- A significant correlation of transpiration rate with the cooling rate of the air, as well as less intensive cooling at a non-vegetated reference site, indicated a contribution of tree transpiration to cooling around and shortly after sunset, but not later in the night

Thank you for your attention!

Research paper: Konarska J., Uddling J., Holmer B., Lutz M., Lindberg F., Pleijel H., Thorsson S., 2015. Transpiration of urban trees and its cooling effect in a high latitude city. Int J Biometeorol (*in press*)

The research was funded by the Swedish Research Council Formas (259-2012-887 and 214-2010-1706), Swedish Transport Administration and Mistra Urban Futures.