Implication of Urban Heating on Pollutant Concentration: Urban Canopy Air Quality and Breathability

N. Nazarian(a), A. Martilli(b), J. Kleissl(a)

a) Department of Mechanical and Aerospace Engineering, University of California, San Diego, USA
b) Center for Energy, Environment and Technology (CIEMAT), Madrid, Spain
Outline

• Introduction
 • Background
 • Objective and Motivations

• Methods
 • Model Description and Numerical Settings
 • Simulation Set-up
 • Time-space averaging

• Characterization of Unstable Flow Field
 • Diurnal Non-uniform Heating of Urban Surfaces
 • Momentum Versus Buoyancy Forcing
 • Diurnal variation of Horizontal and Vertical Richardson Numbers

• Results
 • Flow and dispersion fields
 • Breathability in Urban Street Canyons

• Summary and Conclusion
Introduction and Background

Pollutant Concentration

- Emission

State of the Atmosphere

- Local Ambient Condition
- Roughness Morphology
- Thermal Stratification

Sini et al. 1996

“The differential heating of street surfaces largely influences the transport and pollutants exchange.”
Objectives and Motivations

1. How to improve the CFD simulations of street-scale urban environment?

COMPREHENSIVE:
- Indoor-Outdoor building energy model, flow field, and pollutant dispersion,
- Solar load, soil layers and realistic wind and temperature profiles.

REALISTIC:
- Three-dimensional realistic and transient heating due to solar radiation and shading,
- 3-D compact mid-rise urban industrial/residential zones with low vegetation.

ADVANCED NUMERICAL MODELING:
- Large Eddy Simulation model and validation against experimental data.

2. How to comprehensively characterize the street canyon under unstable conditions? What are the factors that modify this characterization? Validity?

3. How do the flow, temperature and dispersion fields correlate with this characterization method?
Outline

- **Introduction**
 - Background
 - Objective and Motivations

- **Methods**
 - Model Description and Numerical Settings
 - Simulation Set-up
 - Time-space averaging

- **Characterization of Unstable Flow Field**
 - Diurnal Non-uniform Heating of Urban Surfaces
 - Momentum Versus Buoyancy Forcing
 - Diurnal variation of Horizontal and Vertical Richardson Numbers

- **Results**
 - Flow and dispersion fields
 - Breathability in Urban Street Canyons

- **Summary and Conclusion**
Model Description

TUF-IOBES

“Temperature of Urban Facets, Indoor-Outdoor Building Energy Simulator”
- Real weather conditions
- Building and urban material properties
- Composition of the building envelope (e.g. windows, insulation)
- Waste heat from air-conditioning systems
- Indoor heat sources

PALM

“The PArallelized Large-eddy simulation Model (PALM)”
- The Filtered, incompressible Boussinesq equations
 - The 1st law of thermodynamics
- The subgrid-scale (SGS) turbulent kinetic energy (TKE) equation
 - Passive scalar (pollutant) equation

Simulation Setup

Figure 1- Schematic of the computational domain

<table>
<thead>
<tr>
<th>Computational Domain</th>
<th>Matrix of 5x3 Cuboid buildings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulation Site</td>
<td>Boston, Massachusetts Latitude of 42° July 6-8th Average daily temperature</td>
</tr>
<tr>
<td>Configuration</td>
<td>H/W=1 (\lambda_p = 0.29, \lambda_f = 0.25)</td>
</tr>
<tr>
<td>Albedo</td>
<td>0.1 (ground) – 0.3 (walls)</td>
</tr>
<tr>
<td>Wind Direction</td>
<td>(\theta = 0°) from EW</td>
</tr>
<tr>
<td>Wind Speed</td>
<td>(U_b = 0.5, 1, 2, 3) m s(^{-1})</td>
</tr>
</tbody>
</table>
LES Simulations: Time-Space Averaging Unit

Variability of results in spanwise direction

- Coceal et al 2007 – DNS simulation of flow over a matrix of cubes

 “Roll Like circulations with axes in the streamwise direction”

 “Statistics should be collected over 200-400 large eddy turn over time”

Figure 2 - Contour plots of streamwise velocity \(\frac{u}{U_b} \)
30 minutes averaged results

Figure 3 - Contour plots of streamwise velocity \(\frac{u}{U_b} \)
averaged over 11hrs

LES Simulations: Time-Space Averaging Unit

Ensemble-averaging statistics over the repeating units to improve the effective averaging time.

Figure 4 - sub domain unit as shown by the red square. The total domain consist of 5*3 times the subdomain.

Outline

• **Introduction**
 - Background
 - Objective and Motivations

• **Methods**
 - Model Description and Numerical Settings
 - Simulation Set-up
 - Time-space averaging

• **Characterization of Unstable Flow Field**
 - Diurnal Non-uniform Heating of Urban Surfaces
 - Momentum Versus Buoyancy Forcing
 - Diurnal variation of Horizontal and Vertical Richardson Numbers

• **Results**
 - Flow and dispersion fields
 - Breathability in Urban Street Canyons

• **Summary and Conclusion**
Diurnal Non-Uniform Heating of Urban Surfaces

- Clear Summer Day at Latitude of 42 degree

Buoyancy and Momentum Forcing

- Two different Richardson numbers are defined to characterize the flow at different time of the day (ToD).
- Ri_v indicates the vertical atmospheric stability and Ri_h is the measure for wall heating orientation and strength.

Gradient Ri Number

\[
Ri_v = \left(\frac{g H}{R_i b} \right) \frac{T_H - T_a}{T_a \frac{\partial T}{\partial z} \frac{\partial U}{\partial z}}
\]

\[
Ri_h = \frac{g \frac{\partial T}{\partial x} \frac{\partial U}{\partial z}^2}{T \frac{\partial V}{\partial z}} \approx \frac{U_b}{H}^2 = \frac{U_b}{H}^2
\]

Bulk Ri Number

\[
= \left(\frac{Ri_h}{R_i b} \right) \frac{T_W - T_L}{T_a} \left[\frac{Q}{\Delta T (\Delta U)^2 + (\Delta V)^2} \right]
\]

Implication of Urban Heating on Pollutant Concentration, N. Nazarian

Diurnal Variation of Richardson Numbers

\[Ri_v = \left(\frac{gH}{U_b^2} \right) \frac{T_H - T_g}{T_a} \]

\[Ri_h = \frac{g \frac{\partial T}{\partial x}}{\left(\frac{\partial U}{\partial z} \right)^2} \approx \left(\frac{gH}{U_b^2} \right) \frac{T_W - T_L}{T_a} \left(\frac{H}{W} \right) \]

- **AC** – Assisting Condition - \(Ri_h < 0 \)
- **HH** – Horizontal Heating - \(Ri_h \approx 0 \)
- **OC** – Opposing Condition - \(Ri_h > 0 \)

\[U_b = 0.5 \text{ m/s} \]

\[\begin{array}{cccc}
AC1 & AC2 & HH & OC \\
0930 & 1100 & 1330 & 1600 \\
-19.2 & -54.5 & -77.5 & -53.6 \\
-32.7 & -23.4 & 0 & 22.5 \\
\end{array} \]
Outline

- **Introduction**
 - Background
 - Objective and Motivations

- **Methods**
 - Model Description and Numerical Settings
 - Simulation Set-up
 - Time-space averaging

- **Characterization of Unstable Flow Field**
 - Diurnal Non-uniform Heating of Urban Surfaces
 - Momentum Versus Buoyancy Forcing
 - Diurnal variation of Horizontal and Vertical Richardson Numbers

- **Results**
 - Flow and dispersion fields
 - Breathability in Urban Street Canyons

- **Summary and Conclusion**
Results

• PART 1 - FLOW FIELD and DISPERSION
 Contour plots of flow, temperature and concentration
 Vertical Profile of turbulent fluxes at different locations

• PART 2 - Air Quality and Breathability
 Pollutant concentration at pedestrian level
 Air Exchange Rate and Pollutant Exchange Rate
Flow Field and Dispersion

Contour plots of normalized mean velocity magnitude, temperature and concentration field

Horizontal Heating (1330EDT), $Ri_h=0$, Max Ri_v

- AR=1
- *Vertical* plane in the center of building canyon
- *Time-Ensemble Averaged* for 1800s and 15 subdomain units
- $Ub=0.5, 1, 2, 3 \text{ m/s}$

\[
C^+ = \frac{C - C_{ref}}{E \cdot H / U_b}
\]

\[
T^+ = \frac{T - T_{ref}}{Q_h / U_b}
\]
Flow Field and Dispersion

Contour plots of normalized mean velocity magnitude, temperature and concentration field

- **Diurnal Variation of Surface Heating**
- **AR=1**
- **Vertical** plane in the center of building canyon
- **Time-Ensemble Averaged** for 1800s and 15 subdomain units
- **Ub=0.5 m/s**
Flow Field and Dispersion

Contour plots of normalized mean velocity magnitude, temperature and concentration field:
- **Diurnal Variation of Surface Heating**
- **AR=1**
- **Vertical** plane in the center of building canyon
- **Time-Ensemble Averaged** for 1800s and 15 subdomain units
- **Ub=3m/s**

<table>
<thead>
<tr>
<th></th>
<th>AC1</th>
<th>AC2</th>
<th>HH</th>
<th>OC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ri<sub>h</sub></td>
<td>-0.9, Ri<sub>v</sub> = -0.5</td>
<td>-0.6, Ri<sub>v</sub> = -1.5</td>
<td>0.1, Ri<sub>v</sub> = -2.1</td>
<td>0.6, Ri<sub>v</sub> = -1.4</td>
</tr>
</tbody>
</table>

Diagrams showing:
- **U⁺** normalized mean velocity magnitude
- **T⁺** temperature
- **C⁺** concentration field
Outline

• **Introduction**
 • Background
 • Objective and Motivations

• **Methods**
 • Model Description and Numerical Settings
 • Simulation Set-up
 • Time-space averaging

• **Characterization of Unstable Flow Field**
 • Diurnal Non-uniform Heating of Urban Surfaces
 • Momentum Versus Buoyancy Forcing
 • Diurnal variation of Horizontal and Vertical Richardson Numbers

• **Results**
 • Flow and dispersion fields
 • Breathability in Urban Street Canyons

• **Summary and Conclusion**
Breathability in Urban Street Canyons

\[U_b = 3 \text{ m/s} \]

- **Volum Average (Spanwise Canyon)**
- **Pedestrian level \((z=2\text{m}) \)**

![Graph showing dimensionless concentration vs. Ri_n vs. time (hr)]
Breathability in Urban Street Canyons

- $U_b = 0.5 \text{ m/s}$
- $U_b = 1 \text{ m/s}$
- $U_b = 2 \text{ m/s}$
- $U_b = 3 \text{ m/s}$
Conclusion and Summary

Project Goal:
- A realistic and comprehensive study of urban microclimate with LES modeling
- Time and spatial averaging is combined for more accurate representation of flow statistics

Comprehensive characterization Method:
- Break down of the total thermal forcing in urban environments into directional forcings indicated by Ri_h and Ri_v, that are modified by surface material and radiative properties as well as wind speed and direction
- Validity of characterization method evaluated by a similarity analysis

Breathability in the Urban Canyon Under Unstable Stratification

Modification of flow field by the horizontal heating is more apparent for a strongly unstable condition

Thermal field is strongly correlated with the sign of Ri_h

Dispersion field changes linearly as a function of $1/Ri_v$, except for cases of high Ri_h to Ri_v ratio
Validation of numerical models

- Velocity and temperature field of PALM validated by Park et al. [1]
- The prognostic equation for passive scalars in PALM validated by Park et al. [5]
3-Dimensional Air Exchange Rate (ACH)

The effect of non-uniform heating on the air removal performance of street canyon

\[
ACH = ACH_{\text{top}} + ACH_{\text{side}}
\]

\[
ACH_{\text{top}} = \frac{\iint <w> \, dx \, dy}{A_{\text{top}}}
\]

\[
ACH_{\text{side}} = \frac{\iint <v_{\pm}> \, dz \, dy}{A_{\text{side}}}
\]
3-Dimensional Air Exchange Rate (ACH)

- The effect of non-uniform heating on the air removal performance of street canyon

![Graph showing 3-Dimensional Air Exchange Rate (ACH)]