

International Conference on Urban Climate

On the exchange velocity in street canyons with tree planting

<u>Silvana Di Sabatino</u>*, Riccardo Buccolieri**, Laura S. Leo***, Gianluca Pappaccogli**

*Department of Physics and Astronomy - ALMA MATER STUDIORUM, University of Bologna (Italy) ** Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali – University of Salento, Lecce (Italy) *** Civil and Environmental Engineering and Earth Sciences, University of Notre Dame – USA

Ventilation indicators

Overview of CFD studies on urban wind flow and outdoor ventilation of simplified urban configurations, including study of integral parameters for ventilation performance (Mod. Ramponi et al., 2015)

Authors (year)	Configuration	Evaluation parameter	Validation	Sensitivity analysis
Skote et al. (2005)	3D/Circular block with 2 or 4 sectors	0	Y(WT)	Gridres, Wdir, Street.num.
Liu et al. (2005)	3D/Street canyon	τ _p , ACH, PCH	Y (WT)	Canyon AR
Li et al. (2005)	2D/Street canyon	ACH	Y (WT)	Canyon AR
Blocken et al. (2007)	3D/2 parallel buildings	Q	Y (WT)	Gridres, Buildgeom, Street width
Bady et al. (2008)	3D/2 buildings, aligned and	PFR, VF, TP	N	Buildgeom, Street width, Wdir,
	staggered array			Dom.height
Blocken et al. (2008)	3D/2 buildings in V-arrangement	Q	Y (WT)	Gridres, Wdir, Street width
Cheng et al. (2008)	2D/Street canyon	τ_p , ACH, PCH	Y (WT)	Gridres, Canyon AR, Discr.ord.
Bu et al. (2009)	3D/Street canyon	ACH	N	Wdir, Canyon AR
Hang et al. (2009a)	3D/Circular, square, rect. city model	Q	Y (WT)	Gridres, Citygeom, Street.num, Wdir
Hang et al. (2009b)	3D/Circular, square, rect. city model	Q, ε _a , τ _p	Y (WT) ^b	Citygeom, Street.num, Wdir
Hang et al. (2010a)	3D/Long street models	Q, E	Y (WT)	Street width, Street length
Hang et al. (2010b)	3D/Long street models	Q, ACH	Y (WT)	Buildheight, Street width
Hang & Li (2010a)	3D/Aligned array	Q, ACH	Y (WT)	Gridres, Buildgeom, λ _p , Wdir
Hang & Li (2010b)	3D/Aligned arrays of cubes	Q, ACH	Y (WT)	Num of rows, Gridres
Buccolieri et al. (2010)	3D/Aligned array of cubes	Q, τ_p	Y (WT)	Gridres, λ _p
Moonen et al. (2011)	3D/Courtyard	Q	Ν	Court.length, Wdir.
Hang et al. (2012a)	3D/Aligned array	PFR	Y(WT)	Buildheight, Num.rows.array
Hang et al. (2012b)	3D/Long street models	$\tau_{\rm p}, <\tau_{\rm p}>$	Y (WT)	Gridres, Buildheight, Street length
Hang et al. (2013)	3D/aligned arrays	Q, $\tau_{\rm p}$, PFR	Y (WT)	Street roof geom.
Lin et al. (2014)	3D/Aligned & staggered arrays	Q, ACH, PFR	Y (WT)	Turb.mod, Buildheight, Array size, Wdir.

Evaluation parameters

- More than 10 different parameters were used in the literature
- Most studies performed are based on steady RANS equations and on successful validation of these simulations with wind tunnel measurements
- ✓ Most of them considered idealized/regular geometries

LES = Large eddy simulation; Dyn. = dynamic Smagorinsky-Lilly SGS model; Y = yes; N = no; Pass. = passive; Hom.em. = homogeneous emission method; Q = flow rate; τ_p = effective local mean age of air; ACH = air change rate; PRF = purging flow rate; VF = visitation frequency; TP = residence time; PCH = pollutant exchange rate; ε_a = air exchange efficiency; E = total energy density; $\langle \tau_p \rangle$ = spatially averaged mean age of air; WT = wind tunnel; Gridres. = grid resolution; Wdir. = wind direction; Street.num. = number of streets; Canyon AR = canyon aspect ratio; Buildgeom. = building geometry; Dom.height = domain height; Discr.ord. = order of discretization scheme; Citygeom. = city geometry; Buildheight = building height; λ_p = packing area density; Num. of rows = number of rows; Court.length = courtyard length; Num.rows.array. = number of rows in array; Street roof geom. = street roof geometry; Turb.mod. = Turbulence model.

The recent developed concept of **CITY BREATHABILITY** has the appeal to be useful for flow modellers, urban planners and architects during the design of new urban areas since it captures the effect of building configuration and shape on flow and turbulence.

Exchange velocity

(Benthan and Britter, 2003)

Exchange velocity defined either by the average velocity of mass transfer into or out of the urban canopy at a plane of interface between the incanopy and above-canopy flows, or by the momentum flux transfer process within a control volume.

(Hamlyn and Britter, 2005)

Applied the model concept of exchange velocity as a ratio of the momentum flux to the difference between the mass flux above and below the canopy top

Plot of the exchange velocity coefficients U_E/U_{ref} against the packing density λ_p in different studies and for different definitions of U_{ref} .

Panagiotou et al., 2013)

Exchange velocity

(Salizzoni et al., 2009) (Buccolieri R. Salizzoni P., Soulhac L., Garbero V., Di Sabatino S., 2015: The breathability of compact cities. Urban Climate, 13, 73–93)

 u_e is regarded as an exchange ratio that can be used as a surrogate for the complex mass transfer processes between the canopy and the overlying atmosphere

- > u_e calculated for compact cities (λ_p =0.59-0.69) for various wind directions θ
- ➢ u_e is about 2-5% of U_{ref} , a range that compares favourably well to those reported by Solazzo and Britter (2007), Hamlyn and Britter (2005) and Panagiotou et al. (2013)

Study area

Lecce

Catanza

Colopia

Catonia

- Country: Italy (Apulia region)
- City: Lecce is medium size city of south Italy with about 100,000 inhabitants.
- Architectural design of Mediterranean city, consisting of 2-3 storey buildings and narrow street canyons

Lenght: 100m Width (W): 12m Heights of buildings (H): 5-25m H/W: **1.22** Trees (Tilia Cordata)

Study area

- Country: Italy (Apulia region)
- City: Lecce is medium size city of south Italy with about 100,000 inhabitants.
- Architectural design of Mediterranean city, consisting of 2-3 storey buildings and narrow street canyons

Redipuglia St. (study site)

Lenght: 100m Width (W): 12m Heights of buildings (H): 5-25m H/W: **1.22** Trees (Tilia Cordata)

Field campaign: 11 October – 6 December 2013

LAD (m^2m^{-3})

1.74

0.32

0.12

trees on micrometeorology in a medium-size Mediterranean city: in situ experiments and numerical simulations. Proc. ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting and 11th International Conference on Nanochannels, Microchannels, and Minichannels, Chicago (Illinois, USA), 3-7 August.

Exchange velocity from measurements

H avg = 14.68 m

$$U_e = \frac{\iint (\rho u'w' + \rho uw) dS}{\rho A_c (U_{ref} - U_c)}$$

(Hamlyn and Britter, 2005)

 $\overline{\rho u'w'}$: Reynolds shear stresses U_{ref} : reference velocity U_c : in-canopy velocity A_c : exchange area

Exchange velocity from CFD simulations

20th-24th July 2015 Toulouse France

CFD code FLUENT

3D steady-state

grid: hexahedral elements

-~2.000 000

 $-\delta_x = \delta_y = \delta_z = 0.25 \text{ m}$ (close to the walls)

RANS-Equations

- Reynolds Stress Model (RSM)

second order discretization schemes

line source: emission rate Qu u_* : friction velocity

Permeable zone with pressure loss coefficient λ_{fs} = Cd x LAD_{meas.} = 0.35 (large LAI) – 0.024 m²m⁻³ (low LAI)

$$\varepsilon = \frac{u_*^3}{\kappa z} \left(1 - \frac{z}{\delta} \right)$$

E.g. for M = 1:150 (model scale of

previous simulations), $\lambda_{wt} = 52.5 \text{m}^{-1}$

CODASC experiments and our

 $z_0 = 0.1$ m is the aerodynamic roughness length

 δ =150m is the computational domain height

leaf drag coefficient assumed to be 0.2

 $\kappa = Von K \dot{a} rm \dot{a} n$ constant (0.40)

Gromke, 2011 (Environmental Pollution 159, 2094–2099)

Cµ= 0.09

 $\frac{\lambda_{fs}}{M} = Model \ scale$

Exchange velocity calculation

$$\frac{u_e}{U_{ref}(2.5H)} = \frac{q_v}{U_{ref}A_c\left(\left\langle \overline{C}_{canyon} \right\rangle - \left\langle \overline{C}_{bkg} \right\rangle\right)}$$

pollutant flux (kg/s) at roof level through the exchange surface A_c (m²)

 \overline{C}_{canvon} averaged pollutant concentration within the canyon (kg/m³)

 $\langle \overline{C}_{bkg} \rangle$ background concentration (kg/m3), i.e. pollutant concentration of the incoming atmospheric flow (it can be null if this is defined zero outside the domain).

Calculation of u_e from $q_V = \int_{V} Q_U dV - \int_{A} \overline{U}_i \cdot \overline{C} n_i dA$

- $V(m^3)$: whole volume of the canyon. *i* denotes x and y

- Q₁₁ (kmol/m³-s): passive scalar emission rate per unit volume within V
- A (m²): total surface of the street sections at the border of the canopy
- \overline{C} (kmol/m³): concentration

(computed as the residual of a balance of the pollutant fluxes entering and leavening the street (i.e. in the horizontal plane) through the lateral sides

Results: windbreak effect

Normalized wind speed reduction

Results: Exchange velocity

Results: Exchange velocity

$$U_e/U_{ref} = \left|\frac{\overline{u'w'} + uw}{U_{ref}(U_{ref} - U_c)}\right|$$

NIGHT	Parallel		Perpendicular					Parallel			Perpendicular					
	Mean	Std	N_val	Mean	Std	N_val			DAT	Mean	Std	N_val	Mean	Std	N_val	
Campaign 1	0.18	0.19	172	0.16	0.20	34			Campaign 1	0.15	0.15	166	0.23	0.24	6	
Campaign 2	0.13	0.15	104	0.34	0.39	5	all		Campaign 2	0.13	0.09	99	0.07	0.00	1	all
Campaign 3	0.14	0.17	34	0.05	0.06	41			Campaign 3	0.13	0.12	137	0.05	0.09	12	
Campaign 1	0.21	0.22	99	0.16	0.20	34			Campaign 1	0.32	0.24	31	0.28	0.24	5	
Campaign 2	0.17	0.18	48	0.34	0.39	5	<2		Campaign 2	0.25	0.17	7	0.07	0.00	1	<2
Campaign 3	0.14	0.18	31	0.07	0.07	25			Campaign 3	0.25	0.20	24	0.17	0.21	2	
Campaign 1	0.16	0.14	43	NaN	NaN	0			Campaign 1	0.10	0.07	82	0.00	0.00	1	
Campaign 2	0.12	0.12	30	NaN	NaN	0	2< <i>U</i> _{ref} <4		Campaign 2	0.13	0.09	46	NaN	NaN	0	2< <i>U</i> _{ref} <4
Campaign 3	0.09	0.01	3	0.03	0.02	14			Campaign 3	0.12	0.09	85	0.03	0.02	6	
Campaign 1	0.10	0.04	30	NaN	NaN	0			Campaign 1	0.13	0.09	53	NaN	NaN	0	
Campaign 2	0.06	0.02	26	NaN	NaN	0	>4		Campaign 2	0.11	0.05	46	NaN	NaN	0	>4
Campaign 3	NaN	NaN	0	0.01	0.01	2			Campaign 3	0.07	0.03	28	0.02	0.01	4	

We focus on the **cases** U_{ref} <2m/s (majority of data)

We start analysing CFD results (NIGHT, isothermal conditions):

- Campaign 1 (large LAI) and Campaign 3 (low LAI)
- For each Campaign, we performed two simulations: one for the parallel and one for the perpendicular wind (*directions represent the mode of field data*)

Results: TKE from CFD

Isothermal conditions z=4.5m (below tree crown)

TKE

- Slightly larger TKE for large LAI (C1) (below tree crown). The same occurred at z=8.5m (above tree crown)
- When averaged over all the in-canyon volume, no significant difference in TKE due to different LAI!

Ue

Significant difference for different LAI especially for perpendicular wind -> higher Ue for low LAI (C3) due to lower blockage effect

in-canyon volume averaged

Results: Exchange velocity from CFD

Isothermal conditions

In urban canopies, the exchange area A_c is assumed constant (lenght \times width of the canyon), while in our case A_c varies with crown size, leaf density, season... in other words the plane of exchange is reduced

Results: Exchange velocity

30

0.05 0.1

150

60

0.15 0.2

120

 $U_e/U_{ref} = \left| \frac{\overline{u'w'}}{U_{ref} - U_e} \right|$

90

0

180

330

210

300

240

270

CFD – Campaign 3

Field data show opposite results, i.e.:

- U_e is higher for parallel wind $U_{ref} < 2m/s - U_{s}$ is higher for large LAI (Camp. 1)

- This may imply that **the** • turbulent part is more important than the mean counterpart (the latter dominates in the CFD results)
- We thus investigated the contribution of $\overline{u'w'}$
- $U_e/U_{ref} = \left| \frac{\overline{u'w'} + uw}{U_{ref}(U_{ref} U_c)} \right|$
- \geq
 - We obtained the **same behaviour** as for the formulation with uwThis implies that for large LAI, even though there is windbreak (as \succ shown before), U_e is higher due to more turbulence (probably from leaves which the CFD does not take into account for) and thus there is a large exchange in-out of the canyon

Conclusions

- Using high-frequency flow data in combination with CFD simulations it has been possible to appreciate the effect of trees on wind speed reduction and vertical turbulent exchange between a street canyon and the overlying atmosphere
 - A significant windbreak effect was observed in the street canyon with trees (large LAI), as confirmed by simulations
 - The analysis has shown that in the real case the effect of turbulence induced by leaves, neglected in CFD simulations, may be predominant on the mean flow and TKE due to the whole tree crown especially in the perpendicular wind direction
 - ✤ As a consequence, the exchange velocity U_e was found higher for the street canyon with trees (large LAI)
 - ✤ A better parametrization of U_e is required to take into account the turbulent contribution of trees in the exchange as shown in the field measurements.

Aknowledgements

The authors wish to thank the Dipartimento di Ingegneria dell'Innovazione - University of Salento for making available ANSYS Fluent

Results: exchange velocity

Night-time (hh. 23:00 – 05:00) Night-time (hh. 23:00 – 05:00) 330 30 330 30 Percentage $U_e/U_{ref} =$ $\frac{U_e/U_{ref} Campaign 1 - U_e/U_{ref} Campaign 3}{U_e/U_{ref} Campaign 3} \cdot 100 \right) 300$ 60 300 60 0.15 0.2 0.05 0.1 0.4 0.3 Perpendicular 0.2 Parallel 0.1 270 90 270 90 46% 131% 240 120 240 120 210 150 210 150 Parallel Perpendicular 180 180 $U_e/U_{ref} = \left| \frac{\overline{u'w'}}{U_{ref}(U_{ref} - U_c)} \right|$ 31% 361% $U_e/U_{ref} = \left| \frac{\overline{u'w'} + uw}{U_{raf}(U_{raf} - U_c)} \right|$

Campaign 2 – Intermediate LAI

Campaign 1 – large LAI

- Campaign 3 low LAI
- CFD Campaign 1
- CFD Campaign 3

The tables show the percentage increase of the exchange for large LAI (Campaign 1) with respect to the low LAI (Campaign 3)

Results: Exchange velocity

- The same during the day-time
- We have to investigate more the effect of buyancy

- Campaign 2 Intermediate LAI
- Campaign 3 low LAI