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Why do we consider the urban heat island circulation ? 

When UHIC happened, the worse pollution and warmer scenarios 

generally happened compared with the windy day .  

Preconditions for urban heat island circulation (UHIC) 
 

Thermal inversion layer  

Zero background wind 

Horizontal temperature gradient  Horizontal pressure gradient UHIC 

ICUC9, Toulouse, France 

(Falasca,2013) 
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Models 

It is not easy to anlyze the air flow in the canopy or around a single 

building by coupling meothd.  

Coupling method? 

The boundary condition changes with time during the UHIC 

evolution. 



CSCFD compared with traditional CFD 

Porous model  

Meso 

-scale 

(~ 105 m) 

City 

-scale 

(~ 103 m) 

Micro 

-scale 

(~ 101 m) 

Porous model  

Building details resolved 
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Modeling the mesoscale phenomena 

 Coordinate transformation 

 Modifying basic equations and turbulence by 

comparing with mesoscale atmospheric 

governing equation 

 Coriolis terms 

 Modified buoyancy term 

 Compressibility term for energy equation 

 Coordinate transformed terms 

Modeling the overall city scale effect 

 Adding porous turbulence model 

Modeling the 24-hour variation  

 Using daily surface temperature for ground 

Improving numerical stability  

 Using an absorbing layer at the top 

 ICUC9, Toulouse, France 

Modified CFD model -- City-Scal CFD (CSCFD) 
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CSCFD - turbulence governing equations 
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Quasi-steady UHIC – domain 

55 km×2.95km 5 km×100m 

Not to scale 

x 

z 

2
9

5
0

 m
 

10 km 

Symmetry 

Wall 

Pressure 

outlet 

Constant heat flux (city) 

50 m 

110 km 

Table 1 Mesh and other model related setting 

City 

area 

Other 

area 

Time step 1 second 

Simulation 

time 

10 hours to achieve  

quasi-steady state 

Porosity 0.75 1.0 

ICUC9, Toulouse, France 

Constant heat flux (rural, 50W/m2)  
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Comparing with others’ data 
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 Yoshikado (1992)

 Richiardone and Brusasca (1989)

 Kurbatskii (2001)

 Kristof et al. (2009)
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 Our simulation
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1 

Simulation 

Field experiment 
(St. Louis, Missouri) 

Water tank 

experiment 

Our predicted mixing heights agree reasonably well with the field 

data, scaled lab data and computations in literature.  

ICUC9, Toulouse, France 

Mixing height(zi): the height where the maximum difference between the plume 

centerline and ambient density profiles occurs (Lu and Arya, 1997) 
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Quasi-steady UHIC– comparing a flat city and a porous city 

(Porosity= 0.75 𝜆𝑝 = 0.25) Porous city Flat city 
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• When the sensible heat flux is larger, the mixing height is higher, 

vertical velocity is larger, the height of the maximum vertical velocity is 

higher, and the UHIC is stronger. 

Quasi-steady UHIC – effect of heat flux 
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Comparing with water tank experiment 

Case Relative reverse 

height  

ϕ=1.0 

(Theory) 

39.5% 

 

ϕ=1.0 

(Flat city) 

42.6% 

ϕ=0.75 50.3% 

ϕ=0.5 51.3% 

ϕ=0.8 ∗ 55.6% 
Flow reverse height 

Reference height 

Increase 

* water tank data from Yan Yifan 

 Our water tank model produced a relatively lower scaled flow, which agreed with 

other similar studies in the water tank, needs to be further studied. 

Relative reverse height 
 

=
Reverse height

Reference height
 

ICUC9, Toulouse, France 

(Lu, 1997) 



14 

The proposed model could simultaneously simulate the wind and 

thermal environment around several specific buildings and the 

basic dynamics in the whole meso-scale area. 

In the future, the details around the building will be analyzed.  

Preliminary result: simultaneously consider the 

environment around buildings and city climate 

ICUC9, Toulouse, France 



Summary 

• When the city is introduced by porous media,  the 

velocity in the city decreases, the neck of the plume 

increases, and multi-upward flows are observed.  

• Even when the background wind is zero, the velocity 

in the city is not zero due to the UHIC.  

• The mixing height simulated by CSCFD agrees well 

with other data in literature.    

• Dense cities also increase the relative reverse height 

at the edge of the city. 

• Further data will be needed, and validation of the 

code for synoptic wind conditions is also needed. 
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THANK YOU 
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The general plume features are well predicted. 

Comparing with meso-scale model 

Prediction of CSCFD Prediction of Yoshikado (1992) 

17  kmK
z
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• The city height does not affect the 

mixing height, but affects the 

entrainment at the lower part. 

Quasi-steady UHIC – effect of city 
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Application 2 – 12-hour evolution of daytime UHIC 

The sensible heat flux 

is partitioned with 

25% in the porous air 

and 75% at the ground 

surface (assuming 

porosity is 0.75). 
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The 12-hour profiles for the sensible heat flux 

(calculated from the new 24-hour boundary condition)  
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Application 2 – 12-hour evolution of daytime UHIC  

– Comparing mixing height for a flat city and a porous city.  

The porous city has a lower mixing 

height due to flow resistance, which 

leads to multiple smaller plumes. 

x/D

z 1

2

0-0.5-1 0.5 1

Flat city Porous city 

Flat city 

Porous city 
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The mixed porous-resolved approach 
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Porosity = 0.75 



Similar 

Different 

Only interested area is modelled 

All areas are CFD modelled 

Mixed porous-resolved approach 

The mixed porous-

resolved approach can 

predict well the airflow 

pattern in the other 

“city” areas and its 

impact on micro-scale 

flows in the area of 

interest  

The mixed porous-resolved approach 

Other 

“city” area 

Other 

“city” area 
Area of interest 
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Verification - Comparing the mixed 

porous-resolved approach with full 

resolution in an ideal city 
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produces nearly 
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with the fully 

resolved approach. 
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is the temperature lapse rate 
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CSCFD Coordinate transformation 
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Based on the pressure equation, 

The transformation coefficient is 

Kristóf et al. (2009)  
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Including all buildings in a CFD model is not possible 
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Methodology -- City-Scale CFD (CSCFD) 

Resolved 

Only modelling neighborhood (such 

as AVA) is not accurate 
I propose -  

Treat the other urban area using a porous 

turbulence model approach 

Porous media 

22/07/2015 
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How to analyze the UHIC’s effect in the city/around the 

buildings ? 

      by modeling the environment around several buildings in isolation?  

            or by modeling the whole city with simple parameterizations? 

            or by a modified CFD model -- City-Scal CFD (CSCFD)? 

The urban heat island 

circulation is a multi-scale 

flow problem, which includes 
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Introduction 

the mesoscale  (~103 km) 

the city scale    (101~103  km)  

the local scale  (10-3~101 km) 
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