The Interactions between Roughness Turbulence Generated by Block Arrays and Wake around Large Obstacle

> Nurizzatul Atikha binti Rahmat Hagishima Aya Ikegaya Naoki

Int. Conf. on Urban Climate (ICUC9) Toulouse, France

Energy and Environmental Engineering Faculty of Engineering Sciences Kyushu University, Japan

Faculty of Mechanical Engineering University Malaysia Pahang, Malaysia

- 1. Background
- 2. Methodology
- 3. Experimental Details
- 4. Results and Discussions
- 5. Conclusions

 Background

 9th International Conference on Urban Climate (ICUC9), Toulouse

 Urban Boundary Layer

 Aerodyr

Velocity u(z) Roughness

Hagishima et al., 2009

Aerodynamic effects of various array configurations of an urban array

Cheng and Castro, 2002

Near wall flow over urban like roughness

 $U = \frac{u_*}{k} ln\left(\frac{z-d}{z_0}\right)$

The interaction between roughness turbulence generated by block arrays and wake flow behind large obstacle

Flow

Self-similar Vel. Profile: $g(y/\delta(x)) = exp\left(-\left(\frac{y}{\delta}\right)^2\right)$

Max. Vel. Deficit: $\Delta U_n(y) = \propto x^{-0.5}$

Half Wake Width: $\delta(x) \propto x^{0.5}$

Spanwise velocity distribution

32H

1.6*H*

9th International Conference on Urban Climate (ICUC9), Toulouse

16*H*

1. Background

- 2. Methodology
- 3. Experimental Details

4. Results and Discussions

5. Conclusions

Methodology & Exp. Details

9th International Conference on Urban Climate (ICUC9), Toulouse

Spanwise (= total 162 points)

- $\Delta y = 5$ mm for $-14H \sim 14H$
- Δy = 10mm for -18H ~ -14H
 and 14H ~ 18H)

<u>Vertical</u> (= total 7 heights)

Within BL	0.25 ð , 0.50 ð , 0.75 ð , 1.00 ð , 1.25 ð
Above BLH	15 <i>H</i> and 20 <i>H</i>

Instrumentation

- Split-film anemometer (Dantec Dynamics, 55R55)
- 1000 Hz and 30 seconds
- Reference stream velocity : 8m/s at y = 0, z = 20 H

Wall Condition

- Smooth (Flat plate)
- Rough (Staggered Cubical Array, H = 25mm, $\lambda_P = 17.4\%$)

Spire Condition

- With Spire (=S)
- Without Spire (=NS)

Determination of the BLH,
$$\delta (x = x_A, x_B, x_C; y = 0)$$

^{gv} International Conference on Urban Climate (ICUC9), Toulouse
 $A = 49.6H$ $A = 87.7H$ $x_C = 135.9H$
Boundary Layer Height, δ
Position Smooth Rough
A (49.6H) 2.4H 4.1H
B (87.7H) 3.1H 5.6H
C (135.9H) 3.3H 6.6H
Vertical (= total 7 heights)
Vithin BL 0.25 δ , 0.50 δ , 0.75 δ ,
1.00 δ , 1.25 δ
Above BLH 15H and 20H

1. Background

2. Methodology

3. Experimental Details

4. Experimental Results

5. Conclusions

9th International Conference on Urban Climate (ICUC9), Toulouse

Velocity Deficit, $\Delta U_n(y) = U_n^{NS}(y) - U_n^S(y)$

Velocity Deficit ΔU_n – Smooth Surface

Velocity Deficit ΔU_n – Rough Surface

$$U_n = U/U_{ref}$$

Velocity Deficit,
$$\Delta U_n = U_n^{NS}(y) - U_n^S(y)$$

Half wake width $y_{0.5}$ determination

9th International Conference on Urban Climate (ICUC9), Toulouse

Normalized Max Vel. Deficit, \emptyset_n ;

$$\emptyset_{n} = \Delta U_{n} - \Delta U^{min}_{n}$$
$$\Delta U^{max}_{n} - \Delta U^{min}_{n}$$

Half Wake Width, $y_{0.5}$;

Distance between two positions where $\Delta U_n = 0.5(\Delta U_n^{max} - \Delta U_n^{min})$

Normalized Max. Vel. Deficit at C(x = 135.9H)

9th International Conference on Urban Climate (ICUC9), Toulouse

Change of ΔU_n and $y_{0.5}$ with heights – Smooth

th International Conference on Urban Climate (ICUC9), Toulouse

Change of ΔU_n and $y_{0.5}$ with heights – Rough

- 1. Background
- 2. Methodology
- 3. Experimental Details
- 4. Results and Discussions
- 5. Conclusions

Wind tunnel exp. on aerodynamic interaction between the wall shear boundary layer and wake flow behind isolated slender obstacle

- 1) Spanwise variations of \emptyset_n behind a spire above the wall boundary layer show good agreement with the 2D self-similar profile for a 2D wake flow in a free shear flow, despite the weak asymmetrical inflow condition of the wind tunnel
- 2) The ΔU_n , due to the spire, far above the BLH with low turbulence gradually recovers as the streamwise distance increases, whilst that within the wall shear boundary layer with high turbulence is sustained far away from the spire.
- 3) The expansion of the $y_{0.5}$ is compressed in the lateral direction by the turbulence of the wall boundary layer

Thank You

Although the present experimental data indicate an obvious difference in the profiles of the wake flow within and above the wall boundary layer, a detailed understanding of the features of these differences has not been completely attained due to certain limitations mainly caused by the non-uniform inflow condition of the wind tunnel. In addition, the turbulent statistical information of not only the streamwise velocity component, but also the lateral component would be essential for elucidating the mechanism of the interference of the spanwise expansion of the wake due to the wall boundary turbulence, and will be one of our future tasks.

9th International Conference on Urban Climate (ICUC9), Toulouse

Population

Economic Growth

Industrialization

9th International Conference on Urban Climate (ICUC9), Toulouse

Tokyo SkyTree

101 Taipei

Burj Khalifa

Research Motivation

- 1) Geometric effects on urban wind environment
- 2) Flow (=velocity reduction) behind an isolated high-rise, long and slender building

Research Objectives

- 1) To explore the process of turbulence generated by roughness and large obstacle which can enhance the large scale of turbulence
- 2) To examine the aerodynamic interaction between wake flow structure observed behind an isolated high-rise, slender building with wall shear boundary layer develops over urban roughness
- 3) Effects of single spire(passive device) installed normal to wall
- 4) Scientific oriented wind tunnel experiment

Methodology

9th International Conference on Urban Climate (ICUC9), Toulouse

9th International Conference on Urban Climate (ICUC9), Toulouse

9th International Conference on Urban Climate (ICUC9), Toulouse

9th International Conference on Urban Climate (ICUC9), Toulouse

→ With Spire(=S)
→ No Spire(=NS)

Results & Discussions : C(x = 135.9H)

9th International Conference on Urban Climate (ICUC9), Toulouse

Smooth Surface

 $U_n(x_c, y, z)(-)$

Rough surface

 $U_n(x_c, y, z) = U(x, y, z) / U_{ref}(x, y = -18 H, z = 20H)$

Results & Discussions : C(x = 135.9H)

9th International Conference on Urban Climate (ICUC9), Toulouse

Smooth Surface

Rough surface

Smooth

Smooth

Un(Xc,y,z)

Un(Xc,y,z)

36

Smooth

•A_z/δ=0.25(=1.03H) • A_z/δ=0.50(=2.05H) •A_z/δ=0.75(=3.08H) • A_z/δ=1.00(=4.10H) • A_z/δ=1.25(=5.13H) A_15.0H A_20.0H -A z/δ=0.25(=1.03H) -A_z/δ=0.50(=2.05H) A_z/δ=0.75(=3.08H) -A_z/δ=1.00(=4.10H) A_z/δ=1.25(=5.13H) A_15.0H A_20.0H •• A_z/δ=0.25(=1.03H) •• A_z/δ=0.50(=2.05H) • A_z/δ=0.75(=3.08H) • A_z/δ=1.00(=4.10H) A_z/δ=1.25(=5.13H) ••A 15.0H A_20.0H -A_z/δ=0.25(=1.03H) -A_z/δ=0.50(=2.05H) -A_z/δ=0.75(=3.08H) -A_z/δ=1.00(=4.10H) A_z/δ=1.25(=5.13H) A_15.0H A_20.0H

Rough

Rough

38

Rough

39

Results & Discussions : C(x = 135.9H)

9th International Conference on Urban Climate (ICUC9), Toulouse

Smooth Surface

 $U_n(x_c, y, z)(-)$

Rough surface

 $U_n(x_c, y, z) = U(x, y, z) / U_{ref}(x, y = -18 H, z = 20H)$

Results & Discussions : C(x = 135.9H)

9th International Conference on Urban Climate (ICUC9), Toulouse

Smooth Surface

Rough surface

EXPERIMENTAL DETAILS

Vel. deficit: $V - u_x(x, y) = u_o(x)g\left(\frac{y}{\delta(x)}\right)$

Self similar Gradient- diffusion

model :
$$g(y/\delta(x)) = exp\left(-\left(\frac{y}{\delta}\right)^2\right)$$

Max Vel. deficit: $V - u_o(x) \propto x^{-0.5}$

Half wake width: $\delta(x) \propto x^{0.5}$ 43 *Turbulence, Oxford University Press, P.A. Davidson

Theory

Vertical Urban Boundary Layer Structure

Airflow around buildings (Oke et. al, 1988)

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

1) Flow pattern around building

THEORY

(2) Flow regimes with different urban geometries

(a) Isolated roughness flow H/W < 0.3

(b) Wake interference flow 0.3 < H/W < 0.7

(c) Skimming flow H/W > 0.7

Theory

Isolated block

Horseshoe vortex system and mean separation line

Recirculating streamlines can be found in separation zones

Hosker (1979)

THEORY

 \overline{V} : Velocity out of wake region $\overline{u}_x(x, y)$: streamwise velocity $\overline{u}_d(x, y) = \overline{V} - \overline{u}_x(x, y)$: velocity deficit $\overline{u}_{d_0}(x) = \overline{u}_{d_0}(x, 0)$: maximum deficit $\delta(x)$: width of wake

1) Axial gradients in the Re. stress : $\frac{\partial \tau_{ij}^R}{\partial x}$ 2) Axial eq. of motions :

$$\rho(\bar{u} - \nabla)\bar{u}_x = \frac{\partial}{\partial y} \left[\tau_{xy}^R\right] - \frac{\partial \bar{p}}{\partial x}$$

** longitudinal gradients in Re. stresses can be neglected

** $\nabla \cdot \overline{u} = 0$;

3) Simplified momentum eq. for wake;

$$\frac{\partial}{\partial x} \left[\rho \bar{u}_x (\bar{V} - \bar{u}_x) \right] + \frac{\partial}{\partial y} \left[\rho \bar{u}_y (\bar{V} - \bar{u}_x) \right] = -\frac{\partial \tau_{xy}^R}{\partial y}$$

4) $\overline{V} - \overline{u}_{\chi}$ (velocity deficit) tend to be 0 for large |y|;

Momentum deficit balances with drag on an obstacle,

$$D = \int_{-\infty}^{\infty} \rho \bar{u}_x (\bar{V} - \bar{u}_x) dy = constant$$

aerodynamic interaction between the wall shear boundary layer and wake flow behind isolated slender obstacle

- 1) spanwise variations of \emptyset_n behind a spire above the wall boundary layer show good agreement with the 2D self-similar profile for a 2D wake flow in a free shear flow, despite the weak asymmetrical inflow condition of the wind tunnel
- 2) spanwise distribution of the wake within or near the BL showed different trends from that of 2D wake flow:
 - the expansion of the $y_{0.5}$ is compressed in the lateral direction by the turbulence of the wall boundary layer
 - velocity deficit of the wake is sustained far from the spire

Future task

The turbulent statistical information of not only the streamwise velocity component, but also the lateral component would be essential for elucidating the mechanism of the interference of the spanwise expansion of the wake due to the wall boundary turbulence

Α

NO SPIRE (A position) Unn

SMOOTH SURFACE

WITH SPIRE (A position) Unn

SMOOTH SURFACE

NO SPIRE (A position) Standard deviation (x,y=-18,z=20H)

SMOOTH SURFACE

WITH SPIRE (A position) Standard deviation (x,y=-18,z=20H)

Fig. X_b Spanwise distributions of standard deviation at C (x = 135.9H)

NO SPIRE (A position) Skewness

SMOOTH SURFACE

WITH SPIRE (A position) Skewness

В

NO SPIRE (B position) Unn

SMOOTH SURFACE

WITH SPIRE (B position) Unn

SMOOTH SURFACE

NO SPIRE (B position) Standard deviation (x,y=-18,z=20H)

SMOOTH SURFACE

WITH SPIRE (B position) Standard deviation (x,y=-18,z=20H)

SMOOTH SURFACE

Fig. X_b Spanwise distributions of standard deviation at *C* (x = 135.9*H*)

NO SPIRE (B position) Skewness

SMOOTH SURFACE

WITH SPIRE (B position) Skewness

SMOOTH SURFACE

С

Smooth Surface(C position) Standard deviation (x,y=-18,z=20H)

Rough Surface(C position) Standard deviation (x,y=-18,z=20H)

WITH SPIRE (C position)_ full heights Standard deviation (x,y=-18,z=20H)

Smooth Surface_ 1 spire (C position) Skewness

Smooth Surface_ No spire (C position) Skewness

Rough Surface_ 1 spire (C position) Skewness

Atikha (2014) Imamura&Atikha (2014) 0 0 Skewness Skewness -0,6 -0,6 -1,2 -1,2 -1,8 -1,8 -7 0 7 14 -12 12 -14 -18 -6 0 6 18 y/H y/H with a spire, z = 1.5H with a spire, z = 1.65H• with a spire, z = 3.0H with a spire, z = 3.30H•••••• with a spire, z = 20H•••••• with a spire, z = 20.0H

Rough Surface_ No spire (C position) Skewness

Imamura&Atikha (2014) Atikha (2014) 0 0 Skewness Skewness -0,6 -0,6 -1,2 -1,2 -1,8 -1,8 -14 -7 7 0 14 -18 -12 -6 0 6 12 18 y/H y/H without a spire, z = 1.5H without a spire, z = 1.65H without a spire, z = 3.5H -without a spire, z = 3.30H without a spire, z = 20H without a spire, z = 20.0H

 $\langle \bar{\sigma} \rangle / U_{20H}[-]$

<u>Rough</u>

 $\langle \bar{\sigma} \rangle / U$ [-]

<u>Rough</u>

 $\langle \bar{\sigma} \rangle / U$ [-]
NO SPIRE (C position) Unn

SMOOTH SURFACE

WITH SPIRE (C position) Unn

SMOOTH SURFACE

NO SPIRE (C position) Standard deviation (x,y=-18,z=20H)

SMOOTH SURFACE

WITH SPIRE (C position) Standard deviation (x,y=-18,z=20H)

SMOOTH SURFACE

Fig. X_b Spanwise distributions of standard deviation at C (x = 135.9H)

NO SPIRE (C position) Skewness

SMOOTH SURFACE

WITH SPIRE (C position) Skewness

SMOOTH SURFACE

