Vertical range of urban ‘heat island’ in Moscow

Lokoshchenko M.A.1, Korneva I.A.1, Kochin A.V.2, Dubovetskiy A.Z.2, Kulizhnikova L.K.3 and Razin P.E.4

1Lomonosov Moscow State University. Moscow, Russia.
2Central Aerological Observatory. Dolgoprudny, Moscow region, Russia.
3Institute of Experimental Meteorology, Research and Production Association 'Typhoon'. Obninsk, Kaluga region, Russia.
4Russian Radio Television Network. Moscow, Russia.
Urban ‘heat island’ phenomenon

<table>
<thead>
<tr>
<th>Month</th>
<th>Mean highest Diff</th>
<th>Mean lowest</th>
<th>Diff.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan.</td>
<td>40.24</td>
<td>31.96</td>
<td>8.28</td>
</tr>
<tr>
<td>Feb.</td>
<td>41.63</td>
<td>23.70</td>
<td>17.93</td>
</tr>
<tr>
<td>Mar.</td>
<td>48.98</td>
<td>35.94</td>
<td>13.04</td>
</tr>
<tr>
<td>Apr.</td>
<td>50.37</td>
<td>39.42</td>
<td>10.95</td>
</tr>
<tr>
<td>May</td>
<td>64.06</td>
<td>46.34</td>
<td>17.72</td>
</tr>
<tr>
<td>Jun.</td>
<td>60.36</td>
<td>49.75</td>
<td>10.61</td>
</tr>
<tr>
<td>July</td>
<td>71.59</td>
<td>53.84</td>
<td>17.75</td>
</tr>
<tr>
<td>Aug.</td>
<td>77.23</td>
<td>62.79</td>
<td>14.44</td>
</tr>
<tr>
<td>Sep.</td>
<td>66.02</td>
<td>49.97</td>
<td>16.05</td>
</tr>
<tr>
<td>Oct.</td>
<td>57.06</td>
<td>33.51</td>
<td>23.55</td>
</tr>
<tr>
<td>Nov.</td>
<td>47.22</td>
<td>39.44</td>
<td>7.78</td>
</tr>
<tr>
<td>Dec.</td>
<td>42.06</td>
<td>32.99</td>
<td>9.07</td>
</tr>
</tbody>
</table>

By this Table, the reader who makes daily observations on the temperature for a month may compare his mean result with a fixed standard.
The urban atmosphere scheme
(vertical structure of ‘heat island’)
Experimental results: “cross-over effect”.

Tethered balloons

Fig. 2. Wiresonde equipment. Thermistor element is carried aloft by Kytoon. Conducting cable, unwound from reel, transmits electrical impulses to balanced-bridge indicating unit, shielded in metal box on ground. Hand and mounted clinometers measure blow-down angle.

Fig. 7. San Francisco wiresonde data for 2210 PST, 26 March 1952, showing strong surface difference and pronounced “crossover” effect in soundings over built-up (B) and adjacent undeveloped (U) areas.
Experimental results: “cross-over effect”.
Landsberg H.E., 1981: The Urban Climate.

Fig. 5.18 Typical nocturnal vertical temperature structure over an urban and adjacent rural area, showing the so-called crossover effect.
Experimental results: “cross-over effect”.
Landsberg H.E., 1981: The Urban Climate.

Fig. 5.18 Typical nocturnal vertical temperature structure over an urban and adjacent rural area, showing the so-called crossover effect.
Experimental results: vertical range of UHI

Vertical and horizontal temperature distribution over the New York City area on 16 July 1964 from 0407-0612 EST.

Helicopter sounding
Experimental results: vertical range of UHI

Fig. 7. Height variation of the magnitude of the urban heat island of New York City during the hours near sunrise. Range of plus and minus one standard deviation is also shown.
Experimental results: vertical range of UHI

Helicopter sounding
Experimental results: vertical range of UHI

Microwave radiometers at several locations
Measurements of temperature profiles in Moscow region

Dolgoprudny radiosonde station

Ostankino TV tower

High mast in Obninsk

10 km
Sources of used data:

Since 1941 – Aerologic station at Dolgoprudny (2 km to the North from Moscow)
Sources of used data:

Regular measurements on 2, 121 and 301 m

Since 1958 – 310 m High meteorological mast in Obninsk
(96 km to the South from Moscow)
Sources of used data:

Regular measurements on 2, 85, 128, 201, 253, 305, 385 and 503 m

Since 1968 – 540 m TV Tower in Ostankino district of Moscow
(7 km from the city centre)
Methodical problems

Climatic displacement of Obninsk!

Dolgoprudny radiosonde station

Ostankino TV tower

High mast in Obninsk
Methodical problems
Methodical problems

96 km from Moscow Kremlin
Map of the mean-annual isotherms in Russia
(Kobysheva N.V. (Ed.), 2001: The Climate of Russia. Gidrometeoizdat Publ., St.Petersburg, Russia, 656 p.).
Map of the mean-annual isotherms in Russia
(Kobysheva N.V. (Ed.), 2001: The Climate of Russia. Gidrometeoizdat Publ., St.Petersburg, Russia, 656 p.).
Map of the mean-annual isotherms in Russia
(Kobysheva N.V. (Ed.), 2001: The Climate of Russia. Gidrometeoizdat Publ., St.Petersburg, Russia, 656 p.).

Distance between both locations is equal to about 0.3 °C
Methodical problems

Soviet (Russian) radiosonde MRZ
Methodical problems

Soviet (Russian) radiosonde MRZ

White painted rod semi-conducted thermistor of nearly 2 mm diameter and 10 mm length
Methodical problems

Soviet (Russian) radiosonde MRZ

Time constant \(\alpha = 5-6 \) s (Kokovin, 1966) or 7 s (Ivanov et al., 1991)
Methodical problems

Approximate value of the T systematic overestimation by radiosondes in the afternoon and inside inversions is:

$$\Delta T = \alpha \cdot V \cdot \frac{\partial T}{\partial z} = 0.2–0.4 \, ^\circ C,$$

where V is a typical rate of sonde’s ascent.
Methodical problems

However!

Results of the international radiosonde comparisons in Dzhambul, USSR in 1989: T values by the Soviet thermistor despite of its big time constant were mostly lower (in average on 0.2-0.4 °C) than T values by Finnish RS80-15N and by USA VIZ-1392 thermistors having less time constant (2.5–3.0 s). Thus, radiation cooling of the thermistor surface seems to be stronger than its expected inertia.
Data about air temperature are available:

by radiosondes in Dolgoprudny – since 1991 till 2013;

by high mast in Obninsk – since 1993 till 2013;

by TV tower Ostankino in Moscow – since 2006 till 2013
Average profiles of T for the period 2006-2013
The constant elevated inversion in Ostankino – real phenomenon or phantom?
Long history of the question

Fig. 1. Vertical temperature profiles from different measurements: a) Ostankino TV tower sensors (solid lines) and radiosounding in Dolgozvedny (dots) superposed on a facsimile record of the Ostankino sodar on 10–11 July 1991. The shaded layer on the record at night corresponds to a temperature inversion area; below are presented the values of the parameter B_2 from the results of gradient measurements at Ostankino; b) TV tower measurements averaged for October of 1990, at 00:00 (1), 03:00 (2), 06:00 (3), 09:00 (4), 12:00 (5), 15:00 (6), 18:00 (7), and 21:00 (8); c) measurements by three techniques averaged for the time of the experiment at Ostankino at 03:00 (1) and 15:00 (2), in Dolgozvedny at 03:30 and 14:30, in Obninsk at 03:00 (5) and 15:00 (6); d) measurements on the TV tower and radiosounding data during the experiment (the legend is presented in Fig. 1b).
Suggested attempts to explain imaginary elevated inversion:

- Gusev M.A., 1975: heating as a result of adiabatic compression due to constant downward air flows;
- Novikova E.N. et al., 1975: smoke from forest fires in time of heat wave in 1972;
- Pogosyan Kh.P., 1975: influence of real elevated inversions in morning time;
- Pharaponova G.P., 1989: thermal effect from industrial haze layer above the city;
- Different authors: heated plumes from chimneys of urban plants; etc.
Probable explanation:

insufficient P/D ratio where P is radial line’s length and D is the tower diameter. This ratio must be equal at least to five, but it is hardly realized. At Ostankino TV tower P/D ratio is only about 1.0–1.5 at all levels except only the highest one (503 m) where it is equal to 6.9 (with the account of balcony width – even 9.0).

• Probably, dynamic and thermal influence of tower construction on T sensors is inevitable.
Average profiles of T for the period 2006-2013
Average profiles of T for the period 2006-2013
Average daily air temperature at heights from 2 to 500-503 m for the period 2006-2013

<table>
<thead>
<tr>
<th>Height, m</th>
<th>City centre (TV tower)</th>
<th>City periphery (sondes)</th>
<th>Rural zone (Obninsk)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>7.3</td>
<td>5.9</td>
<td>5.9</td>
</tr>
<tr>
<td>100–128</td>
<td>6.0</td>
<td>5.8</td>
<td>6.0</td>
</tr>
<tr>
<td>300–305</td>
<td>4.9*</td>
<td>4.9</td>
<td>5.2</td>
</tr>
<tr>
<td>385–400</td>
<td>4.4</td>
<td>4.4</td>
<td></td>
</tr>
<tr>
<td>500–503</td>
<td>4.0</td>
<td>3.9</td>
<td></td>
</tr>
</tbody>
</table>

This value has been interpolated between 128 and 385 m.
Statistical distributions of the T values on 500-503 m by TV tower and radiosonde data at 3:30 a.m. in winter for the period since 2006 till 2013.

Solid lines represent the normal law distributions for both places.

Data sampling is 640
Total result:

• Since the level of 400 m frequencies of T values are close to each other at all histogram gradations.

• Statistical differences between mean values of T at both locations according to Student criteria are statistically insignificant even with the confidence probability of 0.95.

\[
Z = \frac{(\bar{X} - \bar{Y})}{\sqrt{\sigma^2(X)/n + \sigma^2(Y)/m}}
\]
Average mean-annual profiles of T for the period 1993-2013

- Dolgoprudny, 3:30 a.m. & 3:30 p.m.
- Obninsk, 4:00 a.m. & 4:00 p.m.
Average summer profiles of T for 1993-2013
Average winter profiles of T for 1993-2013
Case studying

January 18th, 2006 (T = −30.1 °C)

August 02nd, 2010 (T = +38.0 °C)
Conclusions:

1. Above big city (Moscow) a thermal anomaly exists as ‘heat island’ effect in daytime at least up to 500 m height and in nighttime up to 100 m. Above 100 m at night ‘cool island’ is a result of the ‘cross-over’ effect.
2. The intensity of both ‘heat island’ and elevated ‘cool island’ gradually goes to zero with a height. At 400-500 m spatial differences between nocturnal and diurnal air temperature are statistically insignificant.
3. The 300 m level may be considered as the vertical range of the urban thermal anomaly in average of a day.
4. The urban ‘heat island’ intensity strongly depends on weather conditions including thermal advection.